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Matrix difference equations and a nested Bethe ansatz

H Babujian†‡, M Karowski§ and A Zapletal‖¶
Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany

Received 14 April 1997

Abstract. The system ofSU(N)- andU(N)-matrix difference equations are solved by means
of a nested version of a generalized Bethe ansatz, also the called ‘off shell’ Bethe ansatz
(Babujian H M 1990 Correlation functions in WZNW model as a Bethe wavefunction for the
Gaudin magnetsProc. XXIVth Int. Symp. (Ahrenshoop, Zeuthen)). To solve this new Bethe
ansatz in the algebraic language analogous to the conventional case, a new type of monodromy
matrices is introduced. They fulfil a new type of Yang–Baxter equations which simplify the
proofs. Using a similar approach as for the conventional nested Bethe ansatz the problem is
solved iteratively. The vanishing of the ‘unwanted terms’ of the first level ansatz is equivalent
to a set of second level difference equations. The solutions are obtained as sums over ‘off-shell’
Bethe vectors. These sums are ‘Jackson-type integrals’. The highest weight property of the
solutions is proved. The solutions are calculated explicitly for several examples ofSU(N)- and
U(N)-representations.

1. Introduction

Difference equations play a role in various contexts of mathematical physics (see, for
example, [2] and references therein). We are interested in the application to the form factor
program in the exact integrable(1+ 1)-dimensional field theory, which was formulated in
1978 by one of the authors (MK) and Weisz [3]. Form factors are matrix elements of local
operatorsO(x)

F (iπ − θ) = 〈p′|O(0)|p〉
wherep′p = m2 coshθ . Difference equations for these functions are obtained by Watson’s
equations [4]

F(θ) = S(θ)F (−θ) F (iπ − θ) = F(iπ + θ) (1.1)

whereS is theS-matrix. For several models these equations have been solved in [3] and
many later publications (see, for example, [5, 6] and references therein). Generalized form
factors are matrix elements for many-particle states. For generalized form factors Watson’s
equations lead typically to matrix difference equations, which can be solved by a generalized
Bethe ansatz, also called ‘off-shell Bethe ansatz’. The conventional Bethe ansatz introduced
by Bethe [7] is used to solve eigenvalue problems. The algebraic formulation, which is
also used in this article, was worked out by Faddeev and coworkers (see, for example,
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[8]). The ‘off-shell Bethe ansatz’ was introduced by one of the authors (HB) to solve the
Knizhnik–Zamolodchikov equations which are differential equations. In [9] a variant of this
technique was formulated to solve matrix difference equations of the form

f (x1, . . . , xi + 2, . . . , xn) = Q(x1, . . . , xn, ; i)f (x1, . . . , xi, . . . , xn) (i = 1, . . . , n)

wheref (x) is a vector-valued function and theQ(x, i) are matrix-valued functions to be
specified later. (For further applications of this technique see also [2, 11].) For higher rank
internal symmetry groups the nested version of this Bethe ansatz has to be applied. The
nested Bethe ansatz used to solve eigenvalue problems was introduced by Yang [10] and
further developed by Sutherland [12] (see also [13] for the algebraic formulation and for new
applications [11]). The very interesting generalization of this technique, which is applicable
to difference equations, is developed in this article for theSU(N) symmetry group. This
generalization demonstrates the power of the Bethe ansatz even more beautifully than the
conventional applications. In addition we solve difference equations for theU(N) case.
It turns out that this problem is much more involved because of the more complicated
Bethe ansatz pseudo-groundstate. However, we need these solution to solve the form factor
problem for theSU(N) chiral Gross–Neveu model in [17]. Other methods to solve matrix
difference equations have been discussed in [5, 14–16].

The article is organized as follows. In section 2 we recall some well known
results concerning theSU(N) and U(N) R-matrices, the monodromy matrix and some
commutation rules. In section 3 we introduce the nested generalized Bethe ansatz to solve
a system of matrix difference equations and present the solutions in terms of ‘Jackson-type
integrals’. The proof of the main theorem avoids the decomposition of the monodromy
matrix, as used, for example, in [9]. Instead we introduce a new type of monodromy
matrix fulfilling a new type of Yang–Baxter relation and which is adapted to the difference
problem. In particular this yields an essential simplification of the proof of the main theorem.
In section 4 we prove the highest weight property of the solutions and calculate the weights.
Section 5 contains some examples of solutions of the matrix difference equations. As already
mentioned compared to theSU(N) case theU(N) case is much more involved. Therefore
we separated the treatment of both cases in each section, such that it is possible to skip the
U(N) parts but to read and to understand only theSU(N) parts.

2. The R-matrix

We consider the vector representations of the spectral parameter dependingR-matrices as
rational solutions of the Yang–Baxter equations.

2.1. The SU(N)-case

Let V 1...n be the tensor product space

V 1...n = V1⊗ · · · ⊗ Vn (2.1)

where the vector spacesVi ∼= CN , (i = 1, . . . , n) are considered as fundamental (vector)
representation spaces ofSU(N). It is straightforward to generalize the results of this paper
to the case where theVi are vector spaces for other representations. We denote the canonical
basis vectors by

|α1 . . . αn〉 ∈ V 1...n (αi = 1, . . . , N). (2.2)
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A vector v1...n ∈ V 1...n is given in terms of its components by

v1...n =
∑
α

|α1 . . . αn〉vα1,...,αn . (2.3)

A matrix acting inV 1...n by is denoted by

A1...n:V
1...n→ V 1...n. (2.4)

The SU(N) spectral parameter dependentR-matrix [18] acts on the tensor product of
two (fundamental) representation spaces ofSU(N). It may be written and depicted as

R12(x1− x2) = b(x1− x2)112+ c(x1− x2)P12 =
�
�
��

@
@

@@

x1 x2
:V 12→ V 21 (2.5)

whereP12 is the permutation operator. Here and in the following we associate a variable
(spectral parameter)xi ∈ C to each spaceVi which is graphically represented by a line
labelled byxi (or simply by i). The components of theR-matrix are

R
δγ

αβ(x1− x2) = δαγ δβδb(x1− x2)+ δαδδβγ c(x1− x2) = �
��
@

@@

α β

γδ

x1 x2 (2.6)

and the functions

b(x) = x

x − 2/N
c(x) = −2/N

x − 2/N
(2.7)

are obtained as the rational solution of the Yang–Baxter equation which reads as and may
be depicted as

R12(x1− x2)R13(x1− x3)R23(x2− x3) = R23(x2− x3)R13(x1− x3)R12(x1− x2)

�
�
��

@
@
@@

=

�
�
��

@
@
@@

1
2 3 1 2 3

(2.8)

where we have employed the usual notation [10]. The ‘unitarity’ of theR-matrix reads and
may depicted as

R21(x2− x1)R12(x1− x2) = 1:
�
�
@
@
�
�
@
@

=
1 2 1 2

.

As usual we define the monodromy matrix (withx = x1, . . . , xn)

T1...n,0(x, x0) = R10(x1− x0)R20(x2− x0) . . . Rn0(xn − x0) =
1 2 n

0. . . (2.9)

as a matrix acting in the tensor product of the ‘quantum space’V 1...n and the ‘auxiliary
space’V0 (all Vi ∼= CN ). The Yang–Baxter algebra relations

T1...n,a(x, xa)T1...n,b(x, xb)Rab(xa − xb) = Rab(xa − xb)T1...n,b(x, xb)T1...n,a(x, xa) (2.10)

imply the basic algebraic properties of the sub-matrices with respect to the auxiliary space
defined by

T1...n
α
β(x, x) ≡

(
A1...n(x, x) B1...nβ(x, x)

C1...n
α(x, x) D1...n

α
β(x, x)

)
. (2.11)
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The indicesα, β on the left-hand side run from 1 toN and on the right-hand side from 2
to N . The commutation rules which we will need later are

B1...nα(x, x
′)B1...nβ(x, x) = B1...nβ ′(x, x)B1...nα′(x, x

′)Rα
′β ′
βα (x − x ′) (2.12)

A1...n(x, x
′)B1...nβ(x, x) = 1

b(x ′ − x)B1...nβ(x, x)A1...n(x, x
′)

− c(x
′ − x)

b(x ′ − x)B1...nβ(x, x
′)A1...n(x, x) (2.13)

and

D1...n
γ ′
γ (x, x

′)B1...nβ(x, x) = 1

b(x − x ′)B1...nβ ′(x, x)D1...n
γ ′
γ ′′(x, x

′)Rγ
′′β ′

βγ (x − x ′)

− c(x − x
′)

b(x − x ′)B1...nγ (x, x
′)D1...n

γ ′
β (x, x). (2.14)

2.2. The U(N)-case

Let V 1...n be the tensor product space

V 1...n = V1⊗ · · · ⊗ Vn Vi = (V ⊕ V̄ )i . (2.15)

HereV ∼= CN is considered as a fundamental representation space ofU(N) and V̄ ∼= CN
as the conjugate representation space. The vectors ofV are sometimes called ‘particles’
with positiveU(1) charge and those of̄V ‘antiparticles’ with negativeU(1) charge. We
will also use instead of 1, 2, . . . the indicesa, b, etc, to refer to the spacesVa, Vb, etc. It
is straightforward to generalize the results of this paper to the case where theVi are vector
spaces for other representations. We denote the canonical basis vectors by

|α1 . . . αn〉 ∈ V 1...n (αi = (1,+), . . . , (N,+), (1,−), . . . , (N,−)). (2.16)

We will later also use the simpler notation(α,+) ≡ α for particles and(α,−) ≡ ᾱ

for antiparticles. A vector inV 1...n is denoted byv1...n and a matrix acting inV 1...n by
A1...n ∈ End(V 1...n).

TheU(N) spectral parameter dependingR-matrixR12(x1−x2) [18] acting on the tensor
product of two particle spacesV 12 = V⊗V coincides with that ofSU(N) used in section 2.1
given by (2.5). Here it will be depicted as

�
�
��

@
@
@@

� I

�I
x1 x2

. (2.17)

Here and in the following we associate a variable (spectral parameter)xi ∈ C to each space
Vi which is graphically represented by a line labelled byxi (or simply byi). For theU(N)-
case in addition an arrow on the lines denotes theU(1)-charge flow. (If we do not want to
specify the direction of charge flow, we draw no arrow.) ForU(N) there is in addition the
R-matrix acting on the tensor product of the antiparticle particle spacesV 1̄2 = V̄ ⊗ V

R1̄2(x1− x2) = 11̄2+ d(x1− x2)K1̄2 =
�
�
��

@
@

@@

	 I

	I
x1 x2

:V 1̄2→ V 21̄ (2.18)

whereK1̄2 is the annihilation–creation matrix. There is no particle–antiparticle ‘backward
scattering’ (see, for example, [18]). The components of theR-matrices are

R
δγ

αβ = δαγ δβδb + δαδδβγ c = �
��
@
@@

� I
�I

α β

γδ

R
δγ̄

ᾱβ = δαγ δβδ + δαβδδγ d = �
��
@

@@
	
I

	
I
ᾱ β

γ̄δ

(2.19)
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with α = (α,+) etc, andᾱ = (α,−) etc. The functions

b(x) = x

x − 2/N
c(x) = −2/N

x − 2/N
d(x) = 2/N

x − 1
(2.20)

belong to the rational solution of the Yang–Baxter equations (2.8) [18], which holds here
for all possible charge flows. The matricesR12̄ andR1̄2̄ have the same matrix elements as
R1̄2 andR12, respectively. The inversion (‘unitarity’) relation of theR-matrix reads as and
may be depicted as

R21(x2− x1)R12(x1− x2) = 1:
�
�
@
@
�
�
@
@

=
1 2 1 2

(2.21)

again for all possible charge flows. A further property of theU(N) R-matrices is crossing
and may be written and depicted as

R
δγ

αβ(x1− x2) = b(x1− x2)R
γ β̄

δ̄α
((x2+ 1)− x1) = b(x1− x2)R

ᾱδ
βγ̄ (x2− (x1− 1))

�
�
��

@
@
@@

��� @@I

���@@I

α β

δ γ

= b
�
�
��

A
A
AA

��	
AAK

��	
AAK�
�

α β

δ γ

= b
�
�
��

@
@
@@

���
@@R
���

@@R
�


α β

δ γ

where again we have used the notationα = (α,+) etc, andᾱ = (α,−) etc. We have
introduced the graphical rule that a line changing the ‘time direction’ also interchanges
particles and antiparticles and changesx → x ± 1 as follows��

x x − 1
(α,±) (α,∓) ��x x + 1

(α,±) (α,∓)
. (2.22)

In a similar way as in the above we introduce a monodromy matrix

T1...n,0(x; x0) = R10(x1− x0) . . . Rn0(xn − x0) (2.23)

= �
?

?

6

6
1 i j n

0

. . . . . ..

as a matrix acting in the tensor product of the ‘quantum space’V 1...n and the ‘auxiliary
space’V0

∼= V ∼= CN as a particle space. Since there is no ‘charge reflection’ the positions
of the particles and the antiparticles will not change under the application ofT1...n,0 to a
state inV 1...n. (The construction of the Bethe states will not be symmetric with respect to
particles and antiparticles, because we only use the monodromy matrix with particles for
the auxiliary space.)

The Yang–Baxter algebra relations (2.10) also hold for theU(N)-monodromy matrix
and the resulting commutation rules (2.12)–(2.14) of theA, B, C, D matrices are the same
as for theSU(N) case of section 2.1.

3. The matrix difference equation and ‘generalized Bethe vectors’

In this section we formulate the matrix difference equations for vector-valued functions
and solve them by means of the nested version of the Bethe ansatz, a variant of the Bethe
ansatz also called ‘off-shell Bethe ansatz’. We will call the solutions ‘generalized Bethe
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vectors’. The conventional Bethe ansatz is used to solve eigenvalue problems and leads
to the ‘Bethe ansatz equations’. This system of equations can usually be solved only for
particular cases. Here the Bethe ansatz leads to some simple functional equations which can
be solved easily and the solutions of the difference equations are given in terms of infinite
sums called ‘Jackson-type integrals’.

3.1. The SU(N)-case

Let

f 1...n(x) =
�
�
�
�f

x1 xn. . .

∈ V 1...n

be a vector-valued function ofx = (x1, . . . , xn) ∈ Cn with values inV 1...n. The components
of this vector are denoted by

f α1...αn (x) (16 αi 6 N).

Conditions 3.1. The following symmetry and periodicity conditions of the vector-valued
function f 1...n(x) are supposed to be valid:

(i) The symmetry property under the exchange of two neighbouring spacesVi andVj
and the variablesxi andxj , at the same time, is given by

f ...j i...(. . . , xj , xi, . . .) = Rij (xi − xj )f ...ij ...(. . . , xi, xj , . . .). (3.1)

(ii) The system of matrix difference equationsholds

f 1...n(. . . , xi + 2, . . .) = Q1...n(x; i)f 1...n(. . . , xi, . . .) (i = 1, . . . , n) (3.2)

where the matricesQ1...n(x; i) ∈ End(V 1...n) are defined by

Q1...n(x; i) = Ri+1i (xi+1− x ′i ) . . . Rni(xn − x ′i )R1i (x1− xi) . . . Ri−1i (xi−1− xi) (3.3)

with x ′i = xi + 2.

The Yang–Baxter equations for theR-matrix guarantee that these conditions are
compatible. The shift of two in (3.2) could be replaced by an arbitraryκ. For the
application to the form factor problem, however, it is fixed to two because of crossing
symmetry. Conditions 3.1(i) and (ii) may be depicted as

(i) �� �f

. . . . . . = �� �f
�
�
@
@. . . . . .

(ii)
�� �f

. . . . . .

= �� �f

. . . . . .� �
& %
��

with the graphical rule that a line changing the ‘time direction’ changes the spectral
parametersx → x ± 1 as follows�� �x x − 1

x x + 1.

TheQ1...n(x; i) fulfil the commutation rules

Q1...n(. . . xi . . . xj + 2 . . . ; i)Q1...n(. . . xi . . . xj . . . ; j)
= Q1...n(. . . xi + 2 . . . xj . . . ; j)Q1...n(. . . xi . . . xj . . . ; i). (3.4)

The following proposition is obvious
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Proposition 3.2. Let the vector-valued functionf 1...n(x) ∈ V 1...n fulfil condition 3.1(i),
then conditions 3.1(ii) for all i= 1, . . . , n are equivalent to each other and also equivalent
to the following periodicity property under cyclic permutation of the spaces and the variables

f 12...n(x1, x2, . . . , xn + 2) = f n1...n−1(xn, x1, . . . , xn−1). (3.5)

Remark 3.3. The equations (3.1) and (3.5) imply Watson’s (1.1) equations for the form
factors [17].

For later convenience we write the matrices

Q1...n(x; i) = tr0T
Q

1...n,0(x; i) (3.6)

as the trace of a new type of monodromy matrices where to the horizontal line two different
spectral parameters are associated, namely one to the right-hand side and the other one to
the left-hand side. However, both are related to a spectral parameter of one of the vertical
lines. This new monodromy matrix is given by the following

Definition 3.4. For i = 1, . . . , n

T
Q

1...n,0(x; i) = R10(x1− xi) . . . Ri−10(xi−1− xi)Pi0Ri+10(xi+1− x ′i ) . . . Rn0(xn − x ′i ) (3.7)

= ��
x1 xi

x ′i

xn

xi x ′i. . . . . .

with x ′i = xi + 2.

Note that fori = n one has simplyT Q1...n,0(x; n) = T1...n,0(x, xn) sinceR(0) is the permutation
operatorP .

The new type of monodromy matrix fulfils a new type of Yang–Baxter relation. Instead
of (2.10) we have fori = 1, . . . , n

T
Q

1...n,0(x; i)T1...n,b(x, u)Rab(x
′
i − u) = Rab(xi − u)T1...n,b(x

′, u)T Q1...n,a(x; i) (3.8)

with x ′ = x1, . . . , x
′
i , . . . , xn andx ′i = xi + 2. This relation follows from the Yang–Baxter

equation for theR-matrix and the obvious relation for the permutations operatorP

PiaRib(xi − u)Rab(x ′i − u) = Rab(xi − u)Rib(x ′i − u)Pia.
Correspondingly to (2.11) we introduce (suppressing the indices 1. . . n)

T Qαβ(x; i) ≡
(
AQ(x; i) BQβ(x; i)
CQ

α
(x; i) DQα

β(x; i)
)

(3.9)

with the commutation rules with respect to the usualA,B,C,D

AQ(x; i)Bb(x, u) = 1

b(x ′i − u)
Bb(x

′, u)AQ(x; i)− c(x
′
i − u)

b(x ′i − u)
BQb(x; i)A(x, u) (3.10)

DQ
a(x; i)Bb(x, u) = 1

b(u− xi)Bb(x
′, u)DQ

a(x; i)Rba(u− x ′i )

− c(u− xi)
b(u− xi)B

Q
b(x; i)Da(x, u)Pab. (3.11)

The system of difference equations (3.2) can be solved by means of a generalized
(‘off-shell’) nested Bethe ansatz. The first level is given by the following.
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Bethe ansatz 3.5.

f 1...n(x) =
∑
u

B1...nβm(x, um) . . . B1...n,β1(x, u1)�
1...ngβ1...βm(x, u) (3.12)

�
�
�
�f

x1 xn. . .

=
∑
u

�
�
�
�g

�
$

. . .

. . .

. . .

...

x1 xn

u1 um

1 1

1

1

where summation overβ1, . . . , βm is assumed and�1...n ∈ V 1...n is the reference state
defined byC1...n

β�1...n = 0 for 1< β 6 N . The summation overu is specified by

u = (u1, . . . , um) = (ũ1− 2l1, . . . , ũm − 2lm) li ∈ Z (3.13)

where theũi are arbitrary constants.

The reference state is

�1...n = |1 . . .1〉 (3.14)

a basis vector with components�α1...αn =∏n
i=1 δαi1. It is an eigenstate ofA1...n andD1...n

A1...n(x, u)�
1...n = �1...n D1...n

α
β(x, u)�

1...n = �1...nδαβ

n∏
i=1

b(xi − u). (3.15)

The sums (3.12) are also called ‘Jackson-type integrals’ (see, for example, [9] and references
therein). Note that the summations overβi run only over 1< βi 6 N . Therefore thegβ1...βm

are the components of a vectorgb1...bm in the tensor product of smaller spaces

gb1...bm ∈ V (1)b1...bm = V (1)1 ⊗ · · · ⊗ V (1)m (3.16)

with

V
(1)
i = {|β〉; 1< β 6 N} ∼= CN−1. (3.17)

We define a new vector-valued functionf (1)
b1...bm

(u) ∈ V (1)b1...bm by

Definition 3.6. Let the vector valued functiongb1...bm(u) ∈ V (1)b1...bm be given by

gb1...bm(x, u) =
n∏
i=1

m∏
j=1

ψ(xi − uj )
∏

16i<j6m
τ(ui − uj )f (1)b1...bm

(u) (3.18)

where the functionsψ(x) andτ(x) fulfil the functional equations

b(x)ψ(x) = ψ(x − 2)
τ (x)

b(x)
= τ(x − 2)

b(2− x) . (3.19)

Using the definition ofb(x) (2.7) we get the solutions of (3.19)

ψ(x) = 0(1−N−1+ 1
2x)

0(1+ 1
2x)

τ(x) = x0(N−1+ 1
2x)

0(1−N−1+ 1
2x)

(3.20)

where the general solutions are obtained by multiplication with arbitrary periodic functions
with period two. Just asg1...m(x, u) also the vector-valued functionf (1)

b1...bm
(u) is an element

of the tensor product of the smaller spacesV
(1)
i
∼= CN−1

f (1)
b1...bm

(u) ∈ V (1)b1...bm
.



Matrix difference equations and a nested Bethe ansatz 6433

We sayf (1)
b1...bm

(u) fulfils conditions 3.1(i)(1) and (ii)(1) if (3.1) and (3.2) hold in this space,
which means that everywhere in (3.1) and (3.3) the matrixR has to be replaced by

R(1) ≡ R restricted toV (1) ⊗ V (1) (3.21)

(cf (3.17)). We are now in a position to formulate the main theorem of this paper.

Theorem 3.7. Let the vector-valued functionf 1...n(x) be given by the Bethe ansatz 3.5 and
let gb1...bm(x, u) be of the form of definition 3.6. If in addition the vector-valued function
f (1)

b1...bm
(u) ∈ V (1)b1...bm fulfils conditions 3.1(i)(1) and (ii)(1), thenf 1...n(x) ∈ V 1...n fulfils

the conditions 3.1(i) and (ii), i.e.f 1...n(x) is a solution of the set of difference (3.2).

Remark 3.8. For SU(2) (see, for example, [9]) the problem is already solved by (3.18)
since thenf (1) is a constant.

Proof. Condition 3.1(i) follows directly from the definition and the normalization of the
R-matrix (2.5)

Rij (xi − xj )�...ij ... = �...ij ...

the symmetry ofg1...m(x, u) given by (3.18) under the exchange ofx1, . . . , xn and

B...j i...,β(. . . xj , xi . . . , u)Rij (xi − xj ) = Rij (xi − xj )B...ij ...,β(. . . xi, xj . . . , u)
which is a consequence of the Yang–Baxter relations for theR-matrix.

Because of proposition 3.2 it is sufficient to prove condition 3.1(ii) only fori = n
Q(x; n)f (x) = traT

Q
a (x; n)f (x) = f (x ′) (x ′ = x1, . . . , x

′
n = xn + 2)

where the indices 1. . . n have been suppressed. For the first step we apply a technique quite
analogous to that used for the conventional algebraic Bethe ansatz which solves eigenvalue
problems. We apply the trace ofT Qa (x; n) to the vectorf (x) as given by (3.12) and push
AQ(x; n) andDQ

a (x; n) through all theBs using the commutation rules (3.10) and (3.11).
Again with x ′ = x1, . . . , x

′
n = xn + 2 we obtain

AQ(x; n)Bbm(x, um) . . . Bb1(x, u1)

= Bbm(x ′, um) . . . Bb1(x
′, u1)

m∏
j=1

1

b(x ′n − uj )
AQ(x; n)+ uwA

DQ
a (x; n)Bbm(x, um) . . . Bb1(x, u1)

= Bbm(x ′, um) . . . Bb1(x
′, u1)

m∏
j=1

1

b(uj − xn)D
Q
a (x; n)R(1)b1a

(u1− x ′n) . . .

. . . R
(1)
bma
(um − x ′n)+ uwDa

whereR(1) is defined by (3.21). The ‘wanted terms’ written explicitly originate from the
first term in the commutations rules (3.10) and (3.11); all other contributions yield the
‘unwanted terms’. If we insert these equations into the representation (3.12) off (x) we
find that the wanted contribution fromAQ already gives the desired result. The wanted
contribution fromDQ applied to� gives zero. The unwanted contributions can be written
as a difference which vanishes after summation over theus. These three facts can be seen
as follows. We have

AQ(x; n)� = � DQ
a (x; n)� = 0
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which follow from (3.15) sinceT Q(x; n) = T (x, xn) andb(0) = 0. The defining relation of
ψ(x) (3.19) implies that the wanted term fromA yields f (x ′). The commutation relations
(3.10), (3.11), (2.13) and (2.14) imply that the unwanted terms are proportional to a
product ofB-operators, where exactly oneBbj (x, uj ) is replaced byBQbj (x; n). Because
of the commutation relations of theBs (2.12) and the symmetry property given by
condition 3.1(i)(1) of g1...m(x, u) it is sufficient to consider only the unwanted terms for
j = m denoted by uwmA and uwmD. They come from the second term in (3.10) ifAQ(x; n)
is commuted withBbm(x, um) and then the resultingA(x, um) pushed through the otherBs
taking only the first terms in (2.13) into account and correspondingly forDQ

a (x; um).
uwmA = −

c(x ′n − um)
b(x ′n − um)

B
Q
bm
(x;m) . . . Bb1(x, u1)

∏
j<m

1

b(um − uj )A(x, um)

uwmDa = −
c(um − xn)
b(um − xn)B

Q
bm
(x;m) . . . Bb1(x, u1)

∏
j<m

1

b(uj − um)Da(x, um)T
Q(1)
b1...bm,a

(u;m)

whereT Q(1) is the new type of monodromy matrix

T
Q(1)
b1...bm,a

(u;m) = R(1)b1a
(u1− um) . . . R(1)bm−1a

(um−1− um)Pbma (3.22)

analogous to (3.6) whose trace over the auxiliary spaceV (1)a yields the shift operator
Q(1)(u;m). With Da(x, um)� = 1a

∏n
i=1 b(xi − um)� (see (3.15)), by the assumption

Q(1)(u;m)f (1)(u) = f (1)(u′) (u′ = u1, . . . , u
′
m = um + 2)

and the defining relations (3.19) ofψ(x) andτ(x), we obtain

trauwmDa (u)�g(x, u) = −uwmA(u
′)�g(x, u′)

where c(−x)/b(−x) = −c(x)/b(x) has been used. Therefore the sum of all unwanted
terms yield a difference analogous of a total differential which vanishes after summation
over theus.

Iterating theorem 3.7 we obtain the nested generalized Bethe ansatz with levels
k = 1, . . . , N − 1. The ansatz of levelk reads

f (k−1)1...nk−1
(x(k−1)) =

∑
x(k)

B
(k−1)
1...nk−1βnk

(x(k−1), x(k)nk ) . . .

. . . B
(k−1)
1...nk−1β1

(x(k−1), x
(k)

1 )�(k−1)1...nk−1
g(k−1)β1...βnk (x(k−1), x(k)). (3.23)

The functionsf (k) andg(k) are vectors with

f (k)
1...nk

, g(k−1)1...nk ∈ V (k)1...nk = V (k)1 ⊗ · · · ⊗ V (k)nk
(V

(k)
i
∼= CN−k).

The basis vectors of these spaces are|α1 . . . αnk 〉(k) ∈ V (k)1...nk andk < αi 6 N .
Analogously to definition 3.6 we write

g(k−1)1...nk (x(k−1), x(k)) =
nk−1∏
i=1

nk∏
j=1

ψ(x
(k−1)
i − x(k)j )

∏
16i<j6nk

τ (x
(k)
i − x(k)j )f (k)

1...nk
(x(k))

(3.24)

where the functionsψ(x) andτ(x) fulfil the functional equations (3.19) with the solutions
(3.20). Then the start of the iteration is given by akmax6 N with

f (kmax−1)1...nnkmax−1 = |kmax . . . kmax〉 andnk = 0 for k > kmax (3.25)

which is the reference state of levelkmax− 1 and trivially fulfils the conditions 3.1.

Corollary 3.9. The system ofSU(N) matrix difference equations (3.2) is solved by the
nested Bethe ansatz (3.23) with (3.24), (3.25) andf 1...n(x) = f (0)1...n(x).
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3.2. The U(N)-case

Let again

f 1...n(x) = ��
�
�f

?6

x1 xi. . . .
xj xn. . .

∈ V 1...n

be a vector-valued function ofx = x1, . . . , xn with values inV 1...n which is now given by
(2.15).

Analogously to theSU(N)-case in section 3.1 we constrain the functionf 1...n by the
conditions 3.1. TheQ1...n(x; i) fulfil the same commutation rules (3.4) as in section 3.1.
Also proposition 3.2 and remark 3.3 hold for theU(N) case. We write theQ-matrices
again as the trace (3.6) of the new type of monodromy matrices analogous to those given
by definition 3.4. We use this monodromy matrix if the indexi is associated with a particle.
If the indexi is associated with an antiparticle, we will use an additional monodromy matrix
of a new type which yields the inverse of theQ-operators.

Q−1
1...n(x; i) = Q̃1...n(x; i) = tr0̄T̃

Q

0̄,1...n
(x; i). (3.26)

It is given by the following

Definition 3.10. For i = 1, . . . , n

T̃
Q

0̄,1...n
(x; i) = R0̄1(xi − x1) . . . R0̄i−1(xi − xi−1)P0̄īR0̄i+1(x

′
i − xi+1) . . . R0̄n(x

′
i − xn)

(3.27)

with the auxiliary spaceV0̄ = V̄ andx ′i = xi + 2.

The ‘unitarity’ of theR-matrix (2.21) implies (3.26).
The new type of monodromy matrix̃T Q

0̄,1...n
fulfils a new type of Yang–Baxter relation

of the form

T̃
Q

a,1...n(x; i)Rāb(xi − u)T1...n,b(x
′, u) = T1...n,b(x, u)Rāb(x

′
i − u)T̃ Qa,1...n(x; i) (3.28)

with x ′ = x1, . . . , x
′
i , . . . , xn andx ′i = xi + 2. In addition to the commutation rules (3.10)

and (3.11) for the case that the indicesi anda belong to particles, we have the commutation
rules for the case that the indicesi anda correspond to antiparticles

ÃQ(x; i)Bb(x ′, u) = 1− d2(x ′i − u)
1+ d(xi − u) Bb(x

′, u)ÃQ(x; i)+ d(x ′i − u)B̃Qb̄ (x; i)A(x ′, u)
(3.29)

D̃
Q
ā (x; i)Bb(x ′, u) = Bb(x, u)Rāb(x ′i − u)D̃Q

ā (x; i)− d(xi − u)B̃Qā (x; i)KābDb(x
′, u).

(3.30)

The system of difference equations (3.2) can be solved by means of a generalized (‘off-
shell’) nested Bethe ansatz. The first level is given by the following.

Bethe ansatz 3.11.

f 1...n(x) =
∑
u

B1...nβm(x, um) . . . B1...nβ1(x, u1)g
1...nβ1...βm(x, u) (3.31)
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where summation over 1< β1, . . . , βm 6 N is assumed. The summation overu is specified
by

u = (u1, . . . , um) = (ũ1− 2l1, . . . , ũm − 2lm) li ∈ Z (3.32)

where theũi are arbitrary constants. For a fixed set of indicesβ = β1, . . . , βm (1< βi 6 N)
the reference state vectorg1...nβ ∈ V 1...n fulfils

C1...n
γ g1...nβ = 0 (1< γ 6 N). (3.33)

Note that we have denoted here byg, what was called�g in section 3.1. This notation
is more convenient, since in contrast to theSU(N) case the space of reference states is
higher dimensional forU(N). This spaceVref of states fulfilling (3.33) is spanned by all
basis vectors of the form

|α1, . . . , αn〉 αi =
{
(1,+) for particles

(αi,−) (1< αi 6 N) for antiparticles.

TheU(1)-charge is left invariant by operators like the monodromy matricesT1...n,0, T Q1...n,0,

T̃
Q

1...n,0 and also by the operations of conditions 3.1. Therefore the spaceV 1...n decomposes
into invariant subspaces of fixed charge, i.e. fixed numbersn−, n+ (n− + n+ = n) of
antiparticles and particles, respectively. Moreover because of the symmetry property (i) it
is sufficient to consider the even smaller subspacesV I−I+ where the antiparticles and the
particles are sitting at fixed placesI− andI+, respectively

V I−I+ = V I− ⊗ V I+ V I− =
⊗
i∈I−

V̄i V I+ =
⊗
i∈I+

Vi (3.34)

such that

V 1...n =
⊕

I−∪I+={1,...,n}
V I−I+ . (3.35)

In the following we consider the case where the antiparticles are sitting at the firstn− places,
i.e. I− = {1, . . . , n−}. Then the space of reference states in the subspaceV I−I+ may be
written as

Vref ∩ V I−I+ ∼= V̄ (1)1 ⊗ · · · ⊗ V̄ (1)n− ⊗�I+ (3.36)

where the spaces̄V (1)
i
∼= CN−1 contain only antiparticle states with̄α > 1 and the vector

�I+ consists of particles withα = 1

�I+ = |1 . . .1〉 ∈ V I+

Therefore, as in (3.16)g may also be considered as a vector

g1...nb1...bmg ∈ V (1)I−b1...bm ⊗�I+

with

V (1)
I−b1...bm =

⊗
i∈I−

V̄
(1)
i ⊗ V (1)b1

⊗ · · · ⊗ V (1)bm
(3.37)

where theV̄ (1)
i
∼= CN−1 are the smaller antiparticle spaces and theV (1)bi

∼= CN−1 are
smaller particle spaces. Again as in section 3.1 we define a new vector-valued function
f (1)

I−b1...bm ∈ V (1)I−b1...bm by
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Definition 3.12. Let g1...nb1...bmg(x, u) be given in the subspace with fixed positions of
anti-particlesI− and particlesI+ as

g1...nb1...bm(x, u) =
∏
i∈I+

m∏
j=1

ψ(xi − uj )
∏

16i<j6m
τ(ui − uj )f (1)I−b1...bm

(x(−), u)⊗�I+ (3.38)

wherex(−) = {xi; i ∈ I−} are the spectral parameters of the anti-particles only.

The functionsψ(x) and τ(x) are the same as in section 3.1 given by (3.20). For the
case that the antiparticles are sitting at the firstn− places the Bethe ansatz 3.11 may be
depicted as

�
�

�
�f (x)

? ?6 6
. . . . . . .

=
∑
u

9(x, u) �
�

�
�f (1)(x(−), u)

�
$

6 6

?

. . . .

. . .

...

. . .

?6 6

1 1

1

1

where9(x, u) is given by the products ofψs andτs of (3.38). The main theorem of this
article is analogous to that of section 3.1.

Theorem 3.13. Let the vector-valued functionf 1...n(x) be given by the Bethe ansatz
3.11 whereg1...nb1...bm(x, u) is of the form of definition 3.12. If in addition the vector-
valued functionf (1)

I−b1...bm
(x(−), u) ∈ V (1)I−b1...bm fulfils conditions 3.1(i)(1) and (ii)(1), then

f 1...n(x) ∈ V fulfils conditions 3.1(i) and (ii), i.e.f 1...n(x) is a solution of the set of
difference (3.2).

Proof. Condition 3.1(i) follows as for theSU(N) case. Again it is sufficient to prove
condition 3.1(ii) fori = n

Q(x; n)f (x) = f (x ′) (x ′ = x1, . . . , x
′
n = xn + 2).

where the indices 1. . . n have been suppressed. For the case that the indexn belongs to a
particle the proof is similar to that in section 3.1. The only difference is that here the next
level Q-matrix is more complicated. Instead of (3.22) we have here

T
Q(1)
ba (x(−), u; bm) =

∏
i∈I−

R
(1)
ia (xi − um)R(1)b1a

(u1− um) . . . R(1)bm−1a
(um−1− um)Pbma. (3.39)

For the case that the indexn belongs to an antiparticle we will prove the inverse of (ii)
using T̃ Qā,1...n. We applyQ−1(x; n) = Q̃(x; n) given by the trace of̃T Qā,1...n(x; n) (cf (3.27))

to the vectorf 1...n(x ′) as given by (3.31) and push̃AQ(x; n) andD̃Q
ā (x; n) through all the

Bs using the commutation rules (3.29) and (3.30). Again withx ′ = x1, . . . , x
′
n = xn+2 we

obtain

ÃQ(x; n)Bbm(x ′, um) . . . Bb1(x
′, u1)

= Bbm(x, um) . . . Bb1(x, u1)

m∏
j=1

1− d2(x ′n − u)
1+ d(xn − u) Ã

Q(x; n)+ uwA

D̃
Q
ā (x; n̄)Bbm(x ′, um) . . . Bb1(x

′, u1)

= Bbm(x, um) . . . Bb1(x, u1)R
(1)
āb1
(x ′n − u1) . . . R

(1)
ābm
(x ′n − um)D̃Q

ā (x; n̄)+ uwDa .
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The ‘wanted’ and ‘unwanted’ terms have origins analogous to those for theSU(N) case. If
we insert these equations into the representation (3.31) off (x ′) we find however, that the
wanted contribution fromAQ vanishes and the wanted contribution fromDQ already gives
the desired result. By definition of̃T Q and the reference state vectorg we have

ÃQ(x; n)g = 0 D̃
Q
ā (x; n)g =

∏
i∈I−

R
(1)
āi (xn − xi)Pāng

if the indexn corresponds to an antiparticle. With

Q(1)−1
(x(−), u; n) = trā

(∏
i∈I−

R
(1)
āi (xn − xi)Pān̄R(1)āb1

(x ′n − u1) . . . R
(1)
ābm
(x ′n − um)

)
and the assumption

Q̃−1(x(−), u; n)f (1)(x(−)′, u) = f (1)(x(−), u)
it follows that the wanted term from̃DQ yields f (x). Again as for theSU(N) case the
unwanted contributions can be written as differences which vanish after summation over
the us. Because of the commutation relations of theBs (2.12) and the symmetry property
(i)(1) of g1...nb1...bmg(x(−), u) it is sufficient to consider only the unwanted terms forj = m
denoted by uwmA and uwmD.

uwmA(x, u) = d(x ′n − um)B̃Qb̄m(x;m) . . . Bb1(x, u1)
∏
j<m

1

b(um − uj )A(x, um)

uwmDā (x, u) = −d(xn − um)B̃Qā (x;m) . . .
. . . Bb1(x, u1)

∏
j<m

1

b(uj − um)Dbm(x
′, um)KābmR

(1)
b1bm

(u1− um) . . .

. . . R
(1)
bm−1bm

(um−1− um).
With

Da(x, u)g(x, u) =
∏
i∈I+

b(xi − u)
∏
i∈I−

R
(1)
ia (xi − u)g(x, u)

Q(1)(x(−), u; bm) = traT
Q(1)
a (x(−), u; bm)

(see (3.39)), the assumption (ii)(1), in particular the relation

Q(1)(x(−), u; bm)f (1)(x(−), u) = f (1)(x(−), u′) (u′ = u1, . . . , u
′
m = um + 2)

and the defining relations of the functionsψ(x) andτ(x) (3.19) follows

uwmA(x, u)g(x, u) = −trāuwmDā (x, u
′)g(x, u′)

which concludes the proof.
As in section 3.1 we can iterate theorem 3.13 to get the nested generalized Bethe ansatz

with levels k = 1, . . . , N − 1. To simplify the notation we introduce as an extension of
I± the index setsIk with nk = |Ik| elements fork = 0, . . . , N − 1 and as an extension of
(3.35) and (3.37) the spaces

V (k)
I−Ik =

⊗
i∈I−

V̄
(k)
i

⊗
i∈Ik

V
(k)
i (3.40)
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with basis vectors|ᾱ1 . . . ᾱn−α1 . . . αnk 〉(k < ᾱi, αi 6 N). In terms of the previous notation

we identifyI+ = I0, n+ = n0, V
1...n = V (0)I−I0 andV (1)

b1...bm = V (1)I−I1. The ansatz of level
k reads

f (k−1)I−Ik−1
(x(−), x(k−1)) =

∑
x(k)

B
(k−1)
I−Ik−1βnk

(x(−), x(k−1), x(k)nk ) . . .

. . . B
(k−1)
I−Ik−1β1

(x(−), x(k−1), x
(k)

1 )g(k−1)I−Ik−1β1...βnk
(x(−), x(k−1), x(k)) (3.41)

where fork < N − 1 analogously to definition 3.12

g(k−1)I−Ik−1Ik
(x(−), x(k−1), x(k)) =

nk−1∏
i=1

nk∏
j=1

ψ(x
(k−1)
i − x(k)j )

×
∏

16i<j6nk
τ (x

(k)
i − x(k)j )f (k)

I−Ik
(x(−), x(k))⊗�(k−1)Ik−1

. (3.42)

For k = 0 with f (0) = f and x(0) = x(+) we have to replace
∏n0
i=1 by

∏
i∈I+ . The start

of the iteration is given by akmax (1 6 kmax 6 N) such that allnk = 0 for k > kmax. We
have to construct a vector-valued function proportional to a fixed vector which fulfils the
assumptions of theorem 3.13. This is given by the following.

Lemma 3.14. The vector-valued functions forkmax< N

f (kmax−1)I−Ikmax−1 = |N̄ . . . N̄kmax . . . kmax〉 (3.43)

and forkmax= N
f (N−1)I−IN−1

(x(−), x(N−1)) =
∏
i∈I−

∏
j∈IN−1

ψ̄N−1(x
(−)
i − x(N−1)

j )|N̄ . . . N̄N . . . N〉 (3.44)

fulfil the conditions 3.1. The function̄ψN−1(x) has to obey the functional equation

(1+ d(x))ψ̄N−1(x) = ψ̄N−1(x − 2) (3.45)

which is solved by

ψ̄N−1(x) =
0
(

1
2 + x

2

)
0
(

1
2 + 1

N
+ x

2

) . (3.46)

Again the general solution is obtained by multiplication with an arbitrary periodic function
with period two.

Proof. Condition 3.1(i) is fulfilled because of the symmetry with respect to the particles
and antiparticles among themselves. Conditions 3.1(ii) follows from the definition (3.3) of
the Q-matrix and (2.18) of theR-matrix. Forkmax < N condition 3.1(ii) follows since the
Q-operators act as the unit operator on the statef (kmax−1)I−Ikmax−1. For kmax = N we have
to take into account annihilation–creation contributions of the antiparticle–particleR-matrix
(2.18). For the last index inI− we have

Q̃(N−1)I−IN−1(x(−), x(N−1); n−) =
∏

j∈IN−1

(1+ d(x(−)n− + 2− x(N−1)
j ))1

and for the last index inIN−1

Q(N−1)I−IN−1(x(−), x(N−1); nN−1) =
∏
j∈I−

(1+ d(x(−)j − x(N−1)
nN−1

))1

which, together with (3.45) implies the difference equations (ii) for (3.44). The solution
(3.46) of (3.45) follows since 1+ d(x) = (x − 1+ 2/N)/(x − 1).
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Corollary 3.15. The system ofU(N) matrix difference (3.2) is solved by the generalized
nested Bethe ansatz (3.41) with (3.42)–(3.45).

4. Weights of generalized Bethe vectors

In this section we analyse some group theoretical properties of generalized Bethe states. We
calculate the weights of the states and show that they are highest weight states. The first
result does not depend on any restriction to the states. On the other hand the second result
is not only true for the conventional Bethe ansatz, which solves an eigenvalue problem and
which is well known, but also, as we will show, for the generalized one which solves a
difference equation (or a differential equation).

4.1. The SU(N)-case

By asymptotic expansion of theR-matrix and the monodromy matrixT (cf (2.5) and (2.9))
we get foru→∞

Rab(u) = 1ab − 2

Nu
Pab +O(u−2) (4.1)

T1...n,a(x, u) = 11...n,a + 2

Nu
M1...n,a +O(u−2). (4.2)

Explicitly we get from (2.9)

M1...n,a = P1a + · · · + Pna (4.3)

where theP s are the permutation operators. The matrix elements ofM1...n,a as a matrix in
the auxiliary space are thesu(N) Lie algebra generators. In the following we will consider
only operators acting in the fixed tensor product spaceV = V 1...n of (2.1); therefore we will
omit the indices 1. . . n. In terms of matrix elements in the auxiliary spaceVa the generators
act on the basis states as

Mα′
α |α1, . . . , αi, . . . , αn〉 =

n∑
i=1

δα′αi |α1, . . . , α, . . . , αn〉. (4.4)

The Yang–Baxter relations (2.10) yield forxa →∞
[Ma + Pab, Tb(xb)] = 0 (4.5)

and if additionallyxb →∞
[Ma + Pab,Mb] = 0 (4.6)

or for the matrix elements

[Mα′
α , T

β ′
β (u)] = δα′βT β

′
α (u)− δαβ ′T α

′
β (u) (4.7)

[Mα′
α ,M

β ′
β ] = δα′βMβ ′

α − δαβ ′Mα′
β . (4.8)

Equation (4.8) represents the structure relations of thesu(N) Lie algebra and (4.7) the
SU(N)-covariance ofT . In particular the transfer matrix is invariant

[Mα′
α , trT (u)] = 0. (4.9)

We now investigate the action of the lifting operatorsMα′
α (α′ > α) to generalized Bethe

vectors.
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Lemma 4.1. Let F [g](x) ∈ V be a Bethe ansatz vector given in terms of a vector
g(x, u) ∈ V (1) ∼= C(N−1)⊗m by

F [g](x, u) = Bβm(x, um) . . . Bβ1(x, u1)�g
β(x, u) (4.10)

with β = β1, . . . , βm. ThenMα′
α F [g] is of the form

Mα′
α F [g] =


m∑
j+1

Bβm . . . δα′βm . . . Bβ1�G
β

j (x, u) for α′ > α = 1

F [M(1)α
′

α g] for α′ > α > 1

(4.11)

where theM(1)α
′

α are thesu(N − 1) generators represented inV (1) (analogously to (4.3))
and

Gm(x, u) =
(

1∏m
j=1 b(um − uj )

−
∏n
i=1 b(xi − um)∏m
j=1 b(uj − um)

Q(1)(u;m)
)
g(x, u). (4.12)

The operatorQ(1)(u;m) ∈ End(V (1)) is a next level Q-matrix given by the trace

Q(1)(u;m) = traT
Q(1)
a (u;m) (4.13)

(see (3.22)). The otherGj are obtained by Yang–Baxter relations.

Proof. First we consider the caseα = 1. The commutation rule (4.7) reads forβ ′ = 1 and
α′ → α

[Mα
1 , Bβ(u)] = δαβA(u)−Dα

β(u).

We commuteMα
1 through all theBs of (4.10) and useMα

1� = 0 for α > 1 (cf (4.4)).
The As andDs appearing are also commuted through all theBs using the commutation
rules (2.13) and (2.14). In each summand exactly oneB-operator disappears. Therefore the
result is of the form of (4.11). Contributions toGm arise when we commuteMα

1 through
Bβm(um) and then push theA(um) andD(um) through the otherBs (j < m), only taking
the first terms of (2.13) and (2.14) into account. All other terms would contain aB(um)

and would therefore contribute to one of the otherGj (j < m). Finally we applyA(um)
andD(um) to �

A(um)� = � Dα
β(um)� = δαβ

n∏
i=1

b(xi − um)�

and get (4.12).
For α′ > α > 1 we again use the commutation rule (4.7)

[Mα′
α , Bβ(u)] = δα′βBα(u)

and get

Mα′
α Bβm(um) . . . Bβ1(u1) = Bβm(um) . . . Bβ1(u1)M

α′
α + Bβ ′m(um) . . . Bβ ′1(u1)M

(1)β
′,α′

β,α

with M(1)
1...m,a = P (1)1a + · · · + P (1)ma analogously to (4.3). Because ofMα′

α � = 0 for α′ > 1
(cf (4.4)) we get (4.11)

The diagonal elements ofM are the weight operatorsWα = Mα
α , they act on the basis

vectors inV as

Wα|α1, . . . , αn〉 =
n∑
i=1

δαiα|α1, . . . , αn〉 (4.14)
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which follows fromPiα
′
α |αi〉 = δααi |α′〉. In particular we get for the Bethe ansatz reference

state (3.14)

Wα� = δα1n�. (4.15)

Lemma 4.2. Let F [g] ∈ V 1...n be as in lemma 4.1. Then

WαF [g] =
{
(n−m)F [g] for α = 1

F [W(1)
α g] for α > 1

(4.16)

where theW(1)
α s are thesu(N−1) weight operators acting inV (1), i.e. the diagonal elements

of generator matrixM(1)α
′

α (analogously to (4.3)).

Proof. By means of the commutation relation (4.7) forα′ = α = β ′ = 1, β > 1

[W1, Bβ ] = −Bβ
we commuteW1 through allm Bs of (4.10) and with (4.15) we get the first equation. For
the second equation we again use (4.7) now forα′ = α > 1, β ′ = 1, β > 1

[Wα,Bβ ] = δαβBβ.
Again commutingWα through all theBs of (4.10) we get with (4.15)

WαBβm . . . Bβ1�g
β1...βm = Bβm . . . Bβ1

(
Wα +

m∑
i=1

δβiα

)
�gβ1...βm

= Bβm . . . Bβ1�(W
(1)
α g)β1...βm

which concludes the proof.

Theorem 4.3. Let the vector-valued functionf (x) ∈ V be given by the Bethe ansatz 3.5
fulfilling the assumptions of theorem 3.7. If in additionf (1) is a highest weight vector and
an eigenvector of the weight operators with

W(1)
α f (1) = w(1)α f (1) (4.17)

then alsof is a highest weight vector

Mα′
α f = 0 (α′ > α) (4.18)

and an eigenvector of the weight operators

Wαf = wαf wα =
{
n−m for α = 1

w(1)α for α > 1
(4.19)

with

wα > wβ (16 α < β 6 N). (4.20)

Proof. To prove the highest weight property we apply lemma 4.1. By assumptionf (1)

fulfils the difference equation

f (1)(u1, . . . , um + 2) = Q(1)(u;m)f (1)(u1, . . . , um).

Together with (3.18), (3.19) and (4.12) we obtain after summation
∑

um
Gm(x, u) = 0, if

um = ũm − 2lm(lm ∈ Z). The same is true for the otherGi in (4.11), sinceg fulfils the
symmetry property of condition 3.1(i) and therebyF [g](x, u) of (4.10) is symmetric with
respect to theui . Therefore in (4.12) we haveMα′

α f = 0 for α′ > α > 1 and forα′ > α = 1
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by assumption onf (1). The weights off follow from lemma 4.2 and also by assumption
on f (1). From the commutation rule (4.8) andMβ

α

† = Mα
β follows

06 Mβ
αM

α
β = Mα

βM
β
α +Wα −Wβ

which implies (4.20).
Since the statesf (kmax−1) of (3.25) are highest weight states inV (kmax−1) with weight

w
(kmax−1)
kmax

= nkmax−1 we have the following.

Corollary 4.4. If f (x) is a solution of the system ofSU(N) matrix difference equations
(3.2)

f (. . . , xi + 2, . . .) = Q(x; i)f (. . . , xi, . . .) (i = 1, . . . , n)

given by the generalized nested Bethe ansatz of corollary 3.9, thenf is a highest weight
vector with weights

w = (w1, . . . , wN) = (n− n1, n1− n2, . . . , nN−2− nN−1, nN−1) (4.21)

wherenk is the number ofB(k−1) operators in the Bethe ansatz of levelk, (k = 1, . . . , N−1).
Further non-highest weight solutions of (3.2) are given by

f α
′

α = Mα′
α f (α′ < α). (4.22)

The interpretation of (4.21) is that eachB(k)-operator reduceswk and lifts awl (l > k) by
one.

4.2. TheU(N)-case

The results of this section and also the techniques used are very similar to the corresponding
ones of the previous section. Therefore we only point out the main differences. By an
asymptotic expansion of theR-matrix and the monodromy matrixT (cf (2.5), (2.18), (2.20)
and (2.23)) we get foru→∞

Rab(u) = 1ab − 2

Nu
Pab +O(u−2) (4.23)

Rāb(u) = 1ab + 2

Nu
Kāb +O(u−2) (4.24)

T1...n,a(x, u) = 11...n,a + 2

Nu
M1...n,a +O(u−2). (4.25)

Explicitly we get from (2.23)

M1...n,a =
∑
i∈I+

Pia −
∑
i∈I−

Kia (4.26)

whereI± denote the particles and antiparticles, respectively.
In the following we will suppress the indices like 1. . . n. In terms of matrix elements

in the auxiliary spaceVa the generators act on the basis states as

Mα′
α |α1, . . . , αi, . . . , αn〉 =

(∑
i∈I+

δα′αi −
∑
i∈I−

δα′αi

)
|α1, . . . , α, . . . , αn〉. (4.27)

The commutation relations of theM andT which follow from the Yang–Baxter relations
are the same as in section 4.1. Also lemma 4.1 holds here for theU(N) case. However,
one has to replace�g in (4.10) by g as in Bethe ansatz 3.11, and theQ-matrix here is
given by the trace of (3.39).
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The slight difference to theSU(N) case arises from the action of the Cartan sub-algebra;
i.e. from the diagonal elements ofM which are the weight operatorsWα = Mα

α . They act
on the basis vectors inV as

Wα|α1, . . . , αn〉 =
(∑
i∈I+

δααi −
∑
i∈I−

δααi

)
|α1, . . . , αn〉 (4.28)

which follows from (4.27). In particular we have for the Bethe ansatz reference stateg

W1g = n+g. (4.29)

This means that also lemma 4.2 holds here for theU(N) case where, however, in (4.16)
the numbern is replaced byn+.

Theorem 4.5. Let the vector-valued functionf (x) ∈ V be given by the Bethe ansatz 3.11
fulfilling the conditions of theorem 3.13, i.e. (3.38) and (3.19). If in additionf (1) is a
highest weight vector and an eigenvector of the weight operators with

W(1)
α f (1) = w(1)α f (1) (4.30)

thenf is also a highest weight vector

Mα′
α f = 0 (α′ > α) (4.31)

and an eigenvector of the weight operators

Wαf = wαf wα =
{
n+ −m for α = 1

w(1)α for α > 1
(4.32)

with

wα > wβ (16 α < β 6 N). (4.33)

The proof of this theorem is again parallel to the corresponding one section 4.1.
The statesf (kmax−1) of lemma 3.14 which define the start of the iteration of the nested

Bethe ansatz are obviously highest weight states inV (kmax−1) with weight w(kmax−1)
kmax

=
nkmax−1− n− by (4.28).

Corollary 4.6. If f (x) is a solution of the system ofU(N) matrix difference equations
(3.3)

f (. . . , xi + 2, . . .) = Q(x; i)f (. . . , xi, . . .) (i = 1, . . . , n)

given by the generalized nested Bethe ansatz of corollary 3.15, thenf is a highest weight
vector with weights

w = (w1, . . . , wN) = (n+ − n1, n1− n2, . . . , nN−2− nN−1, nN−1− n−) (4.34)

wherenk is the number ofB(k) operators in the Bethe ansatz of levelk. Further non-highest
weight solutions of (3.2) are given by

f α
′

α = Mα′
α f (α′ < α). (4.35)

Note that in contrast to theSU(N) case, here the weights may also be negative.
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5. Examples

5.1. The SU(N)-case

From a solution of the matrix difference equations (3.2) one gets a new solution by
multiplication of a scalar function which is symmetric with respect to all variablesxi
and periodic with period two. Therefore the solutions of the following examples may
be multiplied by such functions.

Example 5.1. The simplest example is obtained forkmax = 1 which means the trivial
solution of the difference equations

f 1...n = �1...n.

The weights off 1...n arew = (n, 0, . . . ,0).

In the language of spin chains this case corresponds to the ferromagnetic groundstate.

Example 5.2. For the casekmax= 2 andn(1) = 1 the solution reads

f 1...n(x) =
∑
u

B1...n,β(x, u)�
1...ngβ(x, u)

with u = ũ− 2l (l ∈ Z, ũ an arbitrary constant) and

gβ(x, u) = δβ2

n∏
i=1

ψ(xi − u).

The weights of this vectorf 1...n arew = (n − 1, 1, 0, . . . ,0). The action of the creation
operatorB1...n,β(x, y; u) on the reference state is easily calculated with help of (2.6), (2.9)
and (2.11).

As a particular case of this example we determine explicitly the solution for the
following.

Example 5.3. The action of theB-operator on the reference state for the case ofn = 2 of
example 5.2 yields

B12,β(x, y; u)|11〉 = c(x − u)b(y − u)|β1〉 + c(y − u)|1β〉.
Therefore we obtain

f 12(x, y) =
∑
u

ψ(x − u)ψ(y − u){c(x − u)b(y − u)|21〉 + c(y − u)|12〉}

with u = ũ − 2l, (l ∈ Z). Using the expressions for the functionsb, c, ψ given by (2.7)
and (3.20) we get (by Dougall’s formula) up to a constant

f 12(x, y) =
(

sinπ

(
x − ũ

2
− 1

N

)
sinπ

(
y − ũ

2
− 1

N

)
0

(
y − x

2
+ 1

N

)
×0

(
1+ x − y

2
+ 1

N

))−1

(|21〉 − |12〉).
This solution could also be obtained by means of the method used in [3], namely by
diagonalization of theR-matrix. One obtains the difference equations

f−(x, y) = R−(x − y)f−(y, x) f−(x, y) = f−(y, x + 2)

with the eigenvalueR−(x) = (x + 2/N)/(x − 2/N) of the antisymmetric tensor
representation.
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Example 5.4. Next we consider forN > 2 the case of the quantum spaceV123 =
V1 ⊗ V2 ⊗ V3 and the case that the nested Bethe ansatz has only two levels with two
creation operators in the first level and one in the second level. This meanskmax = 3,
n = 3, n(1) = 2, n(2) = 1 and the weightsw = (1, 1, 1, 0, . . . ,0). The first level Bethe
ansatz is given by

f 123(x, y, z) =
∑
u,v

B123,β(x, y, z; v)B123,α(x, y, z; u)�123gαβ(x, y, z; u, v)

where the summation is specified byu = ũ− 2k, v = ũ− 2l, (k, l ∈ Z). By (3.18)g12 is
related to the next level functionf (1)

12
by

g12(x, y, z; u, v) =
∏

xi=x,y,z

∏
uj=u,v

ψ(xi − uj )τ (u− v)f (1)12
(u, v).

The second level Bethe ansatz reads

f (1)
12
(u, v) =

∑
w

B
(1)
12γ (u, v;w)�(1)

12
g(1)

γ
(u, v;w)

wherew = w̃−2m, (m ∈ Z). The second level reference state is�(1)
12 = |22〉(1) ∈ V (1)12

.
Again according to (3.18)

g(1)
γ
(u, v;w) = ψ(u− w)ψ(v − w)f (2)γ

with f (2)
γ = δγ3. As in example 5.3 the action of the operatorsB andB(1) on their reference

states may be calculated.

For this example the two-level nested Bethe ansatz may be depicted as

���
x y z

u v
w.1 1 1

2 2 3

1
1

2

5.2. The U(N)-case

Example 5.5. Let us consider the trivial case that there is noB-operator in each level of
the nested Bethe ansatz, which means thatkmax of section 3 is equal to one. In the language
of the conventional Bethe ansatz for quantum chains this corresponds to the ‘ferromagnetic
vacuum’. By section 4 this means thatf 1...n(x) has the weights

w = (n+, 0, . . . ,0,−n−).
For fixed positions of the particlesI+ and antiparticlesI− by lemma 3.14 the vector
f 1...n ∈ V I−I+ is given by

f α1...αn (x) =
∏
i∈I−

δαiN̄

∏
i∈I+

δαi1

or if the antiparticles are sitting at the first places

f 1...n = |N̄ . . . N̄1 . . .1〉.
This f 1...n is a highest weight vector inVref.
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Example 5.6. ForN > 2 andn+ > 2 let us take the case where there is oneB-operator
in the first level of the nested Bethe ansatz and noBs in higher levels, which means that
the kmax of section 3 is equal to two. By section 4 this means that the weights are

w = (n+ − 1, 1, 0, . . . ,0,−n−).
The first level ansatz reads

f 1...n(x) =
∑
u

B1...nβ(x; u)g1...nβ(x; u). (5.1)

For fixed positions of the particlesI+ and antiparticlesI−, if the antiparticles are sitting on
the left of all particles, the functiong1...nβ is given by

gI−I+β(x, u) =
∏
i∈I+

ψ(xi − u)f (1)I−β ⊗�I+ (5.2)

with ψ(x) = 0 (1− 1
N
+ x

2

)
/0

(
1+ x

2

)
(see (3.19)) and by lemma 3.14

f (1)
I−I1 = |N̄ . . . N̄2〉 �I+ = |1 . . .1〉 (5.3)

i.e. f (1) is the highest weight vector inV (1)ref . Note that the functionψ appears only with
respect to the parameterxi which correspond to the particles. The action of theB-operators
in (5.1) can easily be obtained from the definition of theR-matrices (2.17) and (2.18). In
particular we consider the following.

Example 5.7. As a simple case of example 5.6 we taken− = 1 andn+ = 2, which means
w = (1, 1, 0, . . . ,0,−1)

f 1̄23(x, y, z) =
∑
u

ψ(y − u)ψ(z − u){c(y − u)b(z − u)|N̄21〉 + c(z − u)|N̄12〉}.

The sum overu can be performed and gives the same result as in example 5.3.

Example 5.8. ForN = 2 letn− = n+ be= 1. In addition to the trivial case of example 5.5
with noB-operator (w = (1,−1)) there is only the possibility analogous to examples 5.6 and
5.7 with oneB-operator. By section 4f 1̄2(x, y) is anU(2)-singlet vector with the weights
w = (0, 0). For N = 2 we must take into account the annihilation–creation contribution,
for the action of theB-operator on the reference state as well as forf (1) due to lemma 3.14:

f 1̄2(x, y) =
∑
u

ψ̄1(x − u)ψ(y − u){d(x − u)b(y − u)|1̄1〉 + c(y − u)|2̄2〉}

with ψ(x) = ψ̄1(x) = 0
(

1
2 + x

2

)
/0

(
1+ x

2

)
. As in example 5.7 the sum overu = ũ− 2l,

(l ∈ Z) can be performed and we get for anyũ the solution

f 1̄2(x, y) = cosπ2 (x − y)
cosπ2 (x − ũ) cosπ2 (y − ũ)

1

x − y + 1
{|1̄1〉 + |2̄2〉}.

As a generalization of this formula for arbitraryN we consider the following.

Example 5.9. Let us take forn− = n+ = 1 the case where there is exactly oneB-operator
in each level of the nested Bethe ansatz, which means that thekmax of section 3 is equal
to N − 1. By section 4 this means the weights arew = (0, . . . ,0), i.e. f 12(x, y) is an
U(N)-singlet. The first level ansatz reads

f 1̄2(x, y) =
∑
u

B1̄2,β(x, y; u)g1̄2β(x, y; u) (5.4)
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whereu = ũ+ 2l, l ∈ Z and

g1̄20(x, y, u) = ψ(y − u)f (1)1̄0
(x, u)�2. (5.5)

The higher-level ansatze are of the same form. A particular solution is

f ᾱβ(x, y) = 1

x − y + 1
δαβ. (5.6)

Proof. The solution (5.6) is, up to a constant, the particular casek = 0 of a general formula
valid for all levels. This general formula (again up to unimportant constants)

f (k)
ᾱβ
(x, y) = ψ̄k(x − y)δαβ (k < α, β 6 N) (5.7)

where as an extension of (3.46)

ψ̄k(x) =
0
(

1
2 + x

2

)
0
(

3
2 − k

N
+ x

2

) (5.8)

will be proved inductively. Fork = N −1 as the start of the iteration formula (5.7) follows
from lemma 3.14. For the other values ofk it follows recursively from (3.41) and (3.42):

f (k−1)1̄2
(x, y) =

∑
u

B
(k−1)
1̄2β

(x, y; u)g(k−1)1̄2β
(x, y; u) (5.9)∑

u

B
(k−1)
1̄2β

(x, y; u)|ᾱk〉 = d(x − u)b(y − u)|k̄k〉 + c(y − u)|ᾱβ〉 (5.10)

g(k−1)ᾱβγ (x, y; u) = ψ(y − u)f (k)ᾱγ (x, u)δβk. (5.11)

We calculate the right-hand side of (5.9) inserting (5.10) and (5.11) withf (k) given by (5.7)
and withu = x + 2l∑
l

ψ(x − u)ψ̄k(y − x)
{
d(x − u)b(y − u)(N − k)|k̄k〉 + c(y − u)

N∑
α=k+1

|ᾱα〉
}

= 1

N

∑
l

{
0
(− 1

N
+ l)

0 (l)

0
(− 1

2 + x−y
2 + l

)
0
(

3
2 − k

N
+ x−y

2 + l
) (N − k)|k̄k〉

+ 0
(− 1

N
+ l)

0 (1+ l)
0
(

1
2 + x−y

2 + l
)

0
(

3
2 − k

N
+ x−y

2 + l
) N∑
α=k+1

|ᾱα〉
}

= constantψ̄k−1(x − y)
N∑
α=k
|ᾱα〉 = constantf (k−1)1̄2

(x, y). (5.12)

The sums overl were performed using the Gauss formula∑
l

0(a + l)0(b + l)
l!0(c + l) = 0(c − a − b)0(a)0(b)

0(c − a)0(c − b) .

This concludes the proof of formula (5.7).

Example 5.10. The last example will be used in [17] to calculate the exact three-particle
form factor of the fundamental field in the chiral Gross–Neveu model. We taken− = 1,
n+ = 2 and again exactly oneB-operator in each level of the nested Bethe ansatz. By
section 4 this means thatf 1̄23(x, y, z) is aU(N)-vector with weights

w = (1, 0, . . . ,0).



Matrix difference equations and a nested Bethe ansatz 6449

The first level ansatz reads

f 1̄23(x, y, z) =
∑
u

B1̄23,β(x, y, z; u)g1̄23β(x, y, z; u). (5.13)

The higher level(k > 1) Bethe ansatz coincides with that of example 5.9. A solution of
the difference equations for this case is given by

f 1̄23(x, y, z) =
∑
u

{
0
(− 1

N
+ x−u

2

)
0
(
x−u

2

) 0
(− 1

N
+ y−u

2

)
0
(
y−u

2

) 0
(− 1

2 + z−u
2

)
0
(

3
2 − 1

N
+ z−u

2

) (N − 1)|1̄11〉

−0
(− 1

N
+ x−u

2

)
0
(
x−u

2

) 0
(− 1

N
+ y−u

2

)
0
(
1+ y−u

2

) 0
(

1
2 + z−u

2

)
0
(

3
2 − 1

N
+ z−u

2

) N∑
α=2

|ᾱα1〉

− 0
(− 1

N
+ x−u

2

)
0
(
1+ x−u

2

) 0
(
1− 1

N
+ y−u

2

)
0
(
1+ y−u

2

) 0
(

1
2 + z−u

2

)
0
(

3
2 − 1

N
+ z−u

2

) N∑
α=2

|ᾱ1α〉
}

(5.14)

whereu = ũ+ 2l, l ∈ Z.

Proof. Analogously to (5.10) and (5.11) we have for(k = 1)

B1̄23,β(x, y, z; u)|ᾱ11〉 = d(x − u)b(y − u)b(z − u)δαβ |1̄11〉 + c(y − u)b(z − u)|ᾱβ1〉
+c(z − u)|ᾱ1β〉

gᾱβ(x, y, z; u) = ψ(y − u)ψ(z − u)f (1)ᾱβ(x, u)
wheref (1)

ᾱβ
(x, u) is the same function as in example 5.9 and given by (5.7) fork = 1.

Inserting this into (5.13) we get by analogy to (5.12) the result (5.14).
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