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Matrix difference equations and a nested Bethe ansatz

H Babujiantf, M Karowski and A Zapleta|q
Institut fur Theoretische Physik, Freie UnivegiBerlin, Arnimallee 14, 14195 Berlin, Germany

Received 14 April 1997

Abstract. The system ofSU (N)- andU (N)-matrix difference equations are solved by means

of a nested version of a generalized Bethe ansatz, also the called ‘off shell' Bethe ansatz
(Babujian H M 1990 Correlation functions in WZNW model as a Bethe wavefunction for the
Gaudin magnet®roc. XXIVth Int. Symp. (Ahrenshoop, Zeuthen)o solve this new Bethe
ansatz in the algebraic language analogous to the conventional case, a new type of monodromy
matrices is introduced. They fulfil a new type of Yang-Baxter equations which simplify the
proofs. Using a similar approach as for the conventional nested Bethe ansatz the problem is
solved iteratively. The vanishing of the ‘unwanted terms’ of the first level ansatz is equivalent
to a set of second level difference equations. The solutions are obtained as sums over ‘off-shell’
Bethe vectors. These sums are ‘Jackson-type integrals’. The highest weight property of the
solutions is proved. The solutions are calculated explicitly for several examps @¥)- and

U (N)-representations.

1. Introduction

Difference equations play a role in various contexts of mathematical physics (see, for
example, [2] and references therein). We are interested in the application to the form factor
program in the exact integrablé + 1)-dimensional field theory, which was formulated in
1978 by one of the authors (MK) and Weisz [3]. Form factors are matrix elements of local
operatorsO(x)

F(ir —0) = (p'|O0)|p)

where p’p = m? coshd. Difference equations for these functions are obtained by Watson’s
equations [4]

F©@)=S@)F(-0) F(im —0) = F(ir +0) (1.1)

where S is the S-matrix. For several models these equations have been solved in [3] and

many later publications (see, for example, [5, 6] and references therein). Generalized form
factors are matrix elements for many-particle states. For generalized form factors Watson'’s
equations lead typically to matrix difference equations, which can be solved by a generalized
Bethe ansatz, also called ‘off-shell Bethe ansatz’. The conventional Bethe ansatz introduced
by Bethe [7] is used to solve eigenvalue problems. The algebraic formulation, which is

also used in this article, was worked out by Faddeev and coworkers (see, for example,
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[8]). The ‘off-shell Bethe ansatz’ was introduced by one of the authors (HB) to solve the
Knizhnik—Zamolodchikov equations which are differential equations. In [9] a variant of this
technique was formulated to solve matrix difference equations of the form

SO, oo, i +2,000,x0) = Q1 ooy Xy 3 D) (X1 oo, Xy e, X)) i=1,...,n)

where f(x) is a vector-valued function and thg(x, i) are matrix-valued functions to be
specified later. (For further applications of this technique see also [2,11].) For higher rank
internal symmetry groups the nested version of this Bethe ansatz has to be applied. The
nested Bethe ansatz used to solve eigenvalue problems was introduced by Yang [10] and
further developed by Sutherland [12] (see also [13] for the algebraic formulation and for new
applications [11]). The very interesting generalization of this technique, which is applicable
to difference equations, is developed in this article for $li&(N) symmetry group. This
generalization demonstrates the power of the Bethe ansatz even more beautifully than the
conventional applications. In addition we solve difference equations foWttié) case.

It turns out that this problem is much more involved because of the more complicated
Bethe ansatz pseudo-groundstate. However, we need these solution to solve the form factor
problem for theSU (N) chiral Gross—Neveu model in [17]. Other methods to solve matrix
difference equations have been discussed in [5, 14-16].

The article is organized as follows. In section 2 we recall some well known
results concerning th6U(N) and U(N) R-matrices, the monodromy matrix and some
commutation rules. In section 3 we introduce the nested generalized Bethe ansatz to solve
a system of matrix difference equations and present the solutions in terms of ‘Jackson-type
integrals’. The proof of the main theorem avoids the decomposition of the monodromy
matrix, as used, for example, in [9]. Instead we introduce a new type of monodromy
matrix fulfilling a new type of Yang—Baxter relation and which is adapted to the difference
problem. In particular this yields an essential simplification of the proof of the main theorem.
In section 4 we prove the highest weight property of the solutions and calculate the weights.
Section 5 contains some examples of solutions of the matrix difference equations. As already
mentioned compared to thed/ (N) case the/(N) case is much more involved. Therefore
we separated the treatment of both cases in each section, such that it is possible to skip the
U(N) parts but to read and to understand only 8#&(N) parts.

2. The R-matrix

We consider the vector representations of the spectral parameter dep&adiagices as
rational solutions of the Yang—Baxter equations.

2.1. The SU(N)-case
Let V- be the tensor product space
VR Ve 8, @)

where the vector spacds = CV, (i = 1,...,n) are considered as fundamental (vector)
representation spaces 8t/ (N). It is straightforward to generalize the results of this paper
to the case where thé are vector spaces for other representations. We denote the canonical
basis vectors by

lay...a,) € V" (@i=1,...,N). (2.2)
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A vector v € V1" is given in terms of its components by
VR =) o ot (2.3)
o

A matrix acting inV1-" by is denoted by
Al...n: Vl...n N Vl"'”. (24)

The SU(N) spectral parameter dependématrix [18] acts on the tensor product of
two (fundamental) representation spacesSof(N). It may be written and depicted as

Rip(x1 — x2) = b(x1 — x2) 112 + c(x1 — x2) P12 = x1><x:2V12 - v (2.5)

where Py, is the permutation operator. Here and in the following we associate a variable
(spectral parameter); € C to each spacé/; which is graphically represented by a line
labelled byx; (or simply byi). The components of thBR-matrix are

) 4
Ri;(xl — Xx2) = 8qy 8psb(x1 — Xx2) + 8u58pyc(X1 — Xx2) = x><xz (2.6)
0! B
and the functions
x —2/N
b(x) = ——— = 2.7
(x) x—2/N c(x) X —2/N (2.7)

are obtained as the rational solution of the Yang—Baxter equation which reads as and may
be depicted as

Rio(x1 — x2) R13(x1 — x3) Ro3(x2 — x3) = Roa(x2 — x3) R13(x1 — x3) R12(x1 — X2)

= 2.8)
LoN3 11,3

where we have employed the usual notation [10]. The ‘unitarity’ ofRhmatrix reads and
may depicted as

Ro1(x2 — x1)Ryo(x1 — x2) = Lt ;2 = .
1 2 1 2

As usual we define the monodromy matrix (with= x3, ..., x,)

T1. n0(x, X0) = R1o(x1 — x0)Roo(x2 — x0) . . . Ryo(x, — xg) = 1<2~—‘—U (2.9)
n

as a matrix acting in the tensor product of the ‘quantum spade™ and the ‘auxiliary
space’Vy (all V; = CV). The Yang—Baxter algebra relations

Tl...n,a ({s xa)Tl...n,b(ﬁ’ xb)Rab(-xa - xb) = Rab(-xa - xb)Tl...n,b(ﬁs xb)Tl...n,a (ﬁs xa) (210)

imply the basic algebraic properties of the sub-matrices with respect to the auxiliary space
defined by

(2.11)

Tl...n%({, x) = ( A a(x, x) Bl...nﬁ({, x) > '

Cl...na(lv -x) Dl...n%(&» -x)
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The indicesx, 8 on the left-hand side run from 1 ¥ and on the right-hand side from 2
to N. The commutation rules which we will need later are

Bi.na (X, X') By np(x, X) = By g (X, X) By na (x, XV RS (x = x) (2.12)
1 ,
Al (&v x/)Bl...nﬁ(iv x) = mBlmnﬁ(ls X)A1.n (&1 x')
c(x’ —x)
- B n ) ' A .n ) 2'13
b —x) B p(x, x) A1 n(x, x) (2.13)
and
Y ’ 1 Y’ np?'p /
Dl...ny (lv X )Bl...nﬁ(iv x) = mBlu.nﬂ’ ({v x)Dl...ny”(ia X )Rﬁy (x - X )
c(x —x') v
_m By (x, x/)Dlm,,ﬂ (x, x). (2.14)

2.2. The U(N)-case

Let V1" be the tensor product space

Here vV = CN is considered as a fundamental representation spatg®h and V = CN
as the conjugate representation space. The vectols afe sometimes called ‘particles
with positive U (1) charge and those df ‘antiparticles’ with negativel/ (1) charge. We
will also use instead of ,2, ... the indicesa, b, etc, to refer to the spacég, V,, etc. It

is straightforward to generalize the results of this paper to the case wheVe &ne vector
spaces for other representations. We denote the canonical basis vectors by

lag...a,) € V" (@=@+),....(N,+), (@1, -),....,(N,-). (2.16)
We will later also use the simpler notatid@, +) = « for particles and(o, —) = &
for antiparticles. A vector inv" is denoted byv!-" and a matrix acting inv*-" by
A1, € Endvi-my,

The U (N) spectral parameter dependiRgmatrix R;»(x1 — x2) [18] acting on the tensor
product of two particle spacés'? = V®V coincides with that ofU (N) used in section 2.1
given by (2.5). Here it will be depicted as

>< . (2.17)
X1 X2

Here and in the following we associate a variable (spectral paramegterf to each space
V: which is graphically represented by a line labelledxbyor simply byi). For theU (N)-
case in addition an arrow on the lines denotestti&)-charge flow. (If we do not want to
specify the direction of charge flow, we draw no arrow.) EQ@V) there is in addition the
R-matrix acting on the tensor product of the antiparticle particle spéidés=V ® V

Rig(x1 — x2) = gy + d(xs — x2)Kgp = x><x:2v”+ vad  (218)
1

where K73, is the annihilation—creation matrix. There is no particle—antiparticle ‘backward
scattering’ (see, for example, [18]). The components ofRhmatrices are
Y 8 Y

R = 84, 845D + 8asdpyc = >< R, = 80y 855 + 8updsyd = >< (2.19)
o

B a B
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with o = (¢, +) etc, andax = («, —) etc. The functions

X —2/N 2/N
- - =" dix) = ~1— 2.20
X—2/N x—2/N =1 (2.20)
belong to the rational solution of the Yang—Baxter equations (2.8) [18], which holds here
for all possible charge flows. The matricRg; and R;3 have the same matrix elements as
Rj, and R1,, respectively. The inversion (‘unitarity’) relation of ti-matrix reads as and

may be depicted as
J (2.21)

Ro1(x2 — x1) R1o(x1 — xp) = 1. ig =
1 2 1

again for all possible charge flows. A further property of th@V) R-matrices is crossing
and may be written and depicted as

b(x) = c(x)

R (1 — x2) = by — xR (2 + 1) — x1) = b(x1 — x2) RE (x2 — (x1 — 1)

5 y 5y 5 vy
>< :bm :bm
o B a B a B

where again we have used the notaton= («, +) etc, anda = (o, —) etc. We have
introduced the graphical rule that a line changing the ‘time direction’ also interchanges
particles and antiparticles and changes> x + 1 as follows

m (o, £) (a0, F)
X x—1 X Ux—l—l- (2.22)

(o, £) (&0, F)
In a similar way as in the above we introduce a monodromy matrix
T1..n,0(x; x0) = Rao(x1 — x0) - - . Ryo(x, — x0) (2.23)
it ol O

as a matrix acting in the tensor product of the ‘quantum sp&ce™ and the ‘auxiliary
space’Vp = V = CV as a particle space. Since there is no ‘charge reflection’ the positions
of the particles and the antiparticles will not change under the applicatidi_qfy to a
state inV1-". (The construction of the Bethe states will not be symmetric with respect to
particles and antiparticles, because we only use the monodromy matrix with particles for
the auxiliary space.)

The Yang—Baxter algebra relations (2.10) also hold for #h@/)-monodromy matrix
and the resulting commutation rules (2.12)—(2.14) of AheB, C, D matrices are the same
as for theSU (N) case of section 2.1.

3. The matrix difference equation and ‘generalized Bethe vectors’

In this section we formulate the matrix difference equations for vector-valued functions
and solve them by means of the nested version of the Bethe ansatz, a variant of the Bethe
ansatz also called ‘off-shell Bethe ansatz’. We will call the solutions ‘generalized Bethe
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vectors’. The conventional Bethe ansatz is used to solve eigenvalue problems and leads
to the ‘Bethe ansatz equations’. This system of equations can usually be solved only for
particular cases. Here the Bethe ansatz leads to some simple functional equations which can
be solved easily and the solutions of the difference equations are given in terms of infinite
sums called ‘Jackson-type integrals’.

3.1. The SU(N)-case

Let
X1| ... | Xp
fln(l) — f ) e Vl...n
be a vector-valued function af = (x4, ..., x,) € C" with values inV1-". The components

of this vector are denoted by
fotl...ct,, (i) (l g ai g N).

Conditions 3.1 The following symmetry and periodicity conditions of the vector-valued
function f1-"(x) are supposed to be valid:

(i) The symmetry property under the exchange of two neighbouring spgacasd V;
and the variables; andx;, at the same time, is given by

f"'fi"‘(. C X, Xy ) = R — xj)f"'ij'" e Xy Xy e ) (3.1)
(i) The system of matrix difference equatiomslds
R+ 2,00) = Qs DR X, ) (i=1,...,n) (3.2)
where the matrice®); ,(x; i) € End(V1-") are defined by
O1.2(x: 1) = Riy1i(Xig1 — X)) ... Ryi (X — X)) Ry (x1 — x) ... Ri_1; (Xi—1 — X;) (3.3)

with x{ = x; + 2.

The Yang-Baxter equations for th-matrix guarantee that these conditions are
compatible. The shift of two in (3.2) could be replaced by an arbitrary For the
application to the form factor problem, however, it is fixed to two because of crossing
symmetry. Conditions 3.1(i) and (ii) may be depicted as

(i)

(i)

with the graphical rule that a line changing the ‘time direction’ changes the spectral
parameters — x + 1 as follows

xmx—l xeJrl'

The Q1. ,(x; i) fulfil the commutation rules
len(...x,- cee X +2,1)Q1n(x, X],J)

=01 xi+2...%...5 01,0 X . x5 D). (3.4)
The following proposition is obvious
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Proposition 3.2 Let the vector-valued functiorf®-"(x) e V1" fulfil condition 3.1(i),
then conditions 3.1(ii) for all & 1, ..., n are equivalent to each other and also equivalent
to the following periodicity property under cyclic permutation of the spaces and the variables

le,..n (xl’ X2,y Xy + 2) — fnl---n—l(xn’ X1, eens xnfl)- (35)

Remark 3.3 The equations (3.1) and (3.5) imply Watson’s (1.1) equations for the form
factors [17].

For later convenience we write the matrices
Q1. (x: 1) = troT2, (x5 1) (3.6)

as the trace of a new type of monodromy matrices where to the horizontal line two different
spectral parameters are associated, namely one to the right-hand side and the other one to
the left-hand side. However, both are related to a spectral parameter of one of the vertical
lines. This new monodromy matrix is given by the following

Definition 3.4 Fori=1,...,n

T2, o(x: i) = Rio(x1 — xi) ... Ri—10(xi—1 — x1) PioRiy10(xis1 — X)) ... Ryo(xy — x))  (3.7)

7
X

Xi

’
RN
xl\ P

with x/ = x; + 2.

Note that fori = n one has simpl;TE_n!O(g; n) = T1._n.0(x, x,) sinceR(0) is the permutation
operatorP.

The new type of monodromy matrix fulfils a new type of Yang—Baxter relation. Instead
of (2.10) we have foi = 1,...,n

T2, o D T1np(x, W) Rap(x] — ) = Rap(xi — )Ty s (&', )T2, (x5 1) (3.8)

with ¥ = xq,...,x/,...,x, andx; = x; + 2. This relation follows from the Yang—Baxter
equation for theR-matrix and the obvious relation for the permutations oper&tor

PigRip(x; — u)Rap(x; — u) = Rap(x; — u) Rip(x] — u) Pig.

Correspondingly to (2.11) we introduce (suppressing the indicesn)

0ag. o _ [ ACsi)  BCp(xsi)
r ﬂ(x”):<cQ°‘(x;i) DQZ(x;n) (3.9)

with the commutation rules with respect to the usdalB, C, D

AQ(x; i) By(x, u) = %Bb@’, u)AQ (x; i) — MB%@; DA(x, u) (3.10)
b(x; —u) b(x; —u)
D9, (x; i) By(x,u) = ;Bb(z, u)D2, (x; i) Rpa (. — X))
b(u — x;)
_CWTN) po Dy (x, ) P, (3.11)
b(u — x;)

The system of difference equations (3.2) can be solved by means of a generalized
(‘off-shell’) nested Bethe ansatz. The first level is given by the following.
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Bethe ansatz 3.5
fl...n (&) — Z Blmnﬂ”, (&, Mm) e Bl,..n,ﬂl (&, ul)Ql-..ngﬁl...ﬁm (&v E) (312)

X1 Xn

X1| ... | Xp
if )T =
“ 1 1

where summation ovegs, ..., B, is assumed an®'" € V1" is the reference state
defined byC; ,#QY” =0 for 1 < g < N. The summation ovet is specified by

u= Wy, ...,up) = @@1—2l1,...,0, —2,) I, eZ (3.13)
where thei; are arbitrary constants.

The reference state is
Qb =11...1) (3.14)
a basis vector with componeng"-* = []"_; §,,1. It is an eigenstate oft; , andD;_,

A (X, ) Q" = Qb Dy, Q" = QM85 [ [ i — w). (3.15)

The sums (3.12) are also called ‘Jackson-type integrals’ (see, for example, [9] and references
therein). Note that the summations oy&erun only over 1< 8; < N. Therefore the#1-f»
are the components of a vectgt? in the tensor product of smaller spaces

with
v = {1f);1< B < Ny=CV L (3.17)
We define a new vector-valued functigt?”" (u) € V™" by

b

Definition 3.6 Let the vector valued functiog?*-»(u) € V""" be given by

(e, u) = Hl_[woc,—u, [T t@—-upf®"w  (318)

i=1j= 1<i<j<m
where the functiong (x) and t(x) fulfil the functional equations
T(x) t(x—2
b = -2 — = 3.19
@Y x) =y —2) b)) b2 —x) (3.19)

Using the definition ob(x) (2.7) we get the solutions of (3.19)

Fr1-N"143x xD(N"1 4 2x)
F(1+ x) T = F(1—N-1+1n)

where the general solutions are obtained by multiplication with arbitrary periodic functions

with period two. Just agl" (x, u) also the vector-valued functiofi®"* " () is an element
of the tensor product of the smaller spade@ =Nt

f(]_)bl bm V(]_)blmbm

v(x) = (3.20)
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We say O (u) fulfils conditions 3.1(i}? and (ii)? if (3.1) and (3.2) hold in this space,
which means that everywhere in (3.1) and (3.3) the md&rixas to be replaced by

R® = R restricted tov® @ v® (3.21)

(cf (3.17)). We are now in a position to formulate the main theorem of this paper.

Theorem 3.7 Let the vector-valued functiofi'-"(x) be given by the Bethe ansatz 3.5 and
let gb+Pn(x,u) be of the form of definition 3.6. If in addition the vector-valued function
FO" ) e vO fylfils conditions 3.1(3Y and (i)Y, then £ (x) e V- fulfils
the conditions 3.1(i) and (ii), i.ef%"(x) is a solution of the set of difference (3.2).

Remark 3.8 For SU(2) (see, for example, [9]) the problem is already solved by (3.18)
since thenf® is a constant.

Proof. Condition 3.1(i) follows directly from the definition and the normalization of the
R-matrix (2.5)

Rij(-xi _ .X])QU — Qlj
the symmetry ofgl" (x, u) given by (3.18) under the exchangexf ..., x, and
Bjtﬁ( e Xy X, u)R[j(x[ — Xj) = R,-j(xi — xj)B...ij...,ﬂ(- e Xy Xja, M)

which is a consequence of the Yang—Baxter relations foiRimeatrix.
Because of proposition 3.2 it is sufficient to prove condition 3.1(ii) onlyifer n

Q(x;n) f(x) =tr, TL(x;n) f(x) = f(x) ' =x1,...,x, =x,+2)

where the indices 1 . n have been suppressed. For the first step we apply a technique quite
analogous to that used for the conventional algebraic Bethe ansatz which solves eigenvalue
problems. We apply the trace @f¢(x; n) to the vectorf (x) as given by (3.12) and push
AQ(x;n) and DZ(x; n) through all theBs using the commutation rules (3.10) and (3.11).
Again withx” = xq, ..., x;, = x, + 2 we obtain

A% (x;n) By, (x, ) . .. By, (x, uz)

m

m
1
=By,  um) ... B up) [ | A% n) + uw,
! 111 b(x], — u;)
D2 (x: n)By, (x, ) ... By, (x, u1)
m
1
= By, & up) ... Bbl(f, u1) 1_[ biDaQ({; n)R,(,ﬂ(ul — x,;) .
j=1 (uj - xn)

1
.. RIE,,,)a (Um — x,,) + UWp,

where R is defined by (3.21). The ‘wanted terms’ written explicitly originate from the
first term in the commutations rules (3.10) and (3.11); all other contributions yield the
‘unwanted terms’. If we insert these equations into the representation (3.12xpfwe

find that the wanted contribution from¢ already gives the desired result. The wanted
contribution fromD¢ applied toQ gives zero. The unwanted contributions can be written
as a difference which vanishes after summation oveutheThese three facts can be seen
as follows. We have

ACmQ=2  DEmQ=0
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which follow from (3.15) sinc& ¢ (x; n) = T(x, x,,) andb(0) = 0. The defining relation of
¥(x) (3.19) implies that the wanted term fromyields f(x’). The commutation relations
(3.10), (3.11), (2.13) and (2.14) imply that the unwanted terms are proportional to a
product of B-operators, where exactly ong, (x, u;) is replaced byBQ(x n). Because

of the commutation relations of th&s (2. 12) and the symmetry property given by
condition 3.1(i}Y of g>(x,u) it is sufficient to consider only the unwanted terms for

j = m denoted by u§f and uwj;. They come from the second term in (3.10)4f (x; n)

is commuted withBy,, (x, u,,) and then the resulting (x, u,,) pushed through the othérs
taking only the first terms in (2.13) into account and correspondinglyX8tx; u,,).

¢y = tn) o

W = = e — gy Do 1) - B "l),l:[m WA(L )
uw = i k) B (x;m)... By (x, ul)]_[;D ) TES (s m)
‘ bum — xy) jom b — )
whereT 2@ is the new type of monodromy matrix
T2 (wim) = Ry (g — ) ... RS (o1 — ) Py (3.22)

analogous to (3.6) whose trace over the auxrlrary spefR yields the shift operator
0D (u; m). With D, (x, u)Q = 1, [/_; b(x; — u,,)S2 (see (3.15)), by the assumption

0P w;m) fPw = fOw) W =ut, ... u)y =y +2)
and the defining relations (3.19) gf(x) and t(x), we obtain

tr,uwp, (w)Q2g(x, ) = —uwy (u)Qg(x, u')
where ¢(—x)/b(—x) = —c(x)/b(x) has been used. Therefore the sum of all unwanted
terms yield a difference analogous of a total differential which vanishes after summation
over theus.

Iterating theorem 3.7 we obtain the nested generalized Bethe ansatz with levels
k=1, ...,N — 1. The ansatz of level reads

(k=DL-m-1. -1y _ (k—1) k=1 k)
! (x )= ZBl Y (x Xy ).

x)
k—1 k—1 k k—1)L...n— k—1)B1--Bn k—1 k
LBED 6D )y gl D PP (b)), (3.23)
The functionsf(") andg® are vectors with
1. 1. 1..ng ~ _
f(k) Nk (k 1)Lk c V(k) e Vl(k) ® - ® Vn(f) (Vi(k) ~ CN k).

. 1.
The basis vectors of these spaces |ake .., )* € VO~

Analogously to definition 3.6 we write

Ng—1 Ng

_1l.n 1 k k—1 k k k 1.n
gt ),f))—]"[]"[w(x( T T r@® =T a®)

i=1j= 1<i<j<ng

andk < a; < N.

(3.24)

where the functiongs (x) and z (x) fulfil the functional equations (3.19) with the solutions
(3.20). Then the start of the iteration is given byax < N with

flma DMy g andng =0 fork > kmax  (3.25)
which is the reference state of levighox — 1 and trivially fulfils the conditions 3.1.

Corollary 3.9 The system ofSU(N) matrix difference equations (3.2) is solved by the
nested Bethe ansatz (3.23) with (3.24), (3.25) gid" (x) = fO*" (x).
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3.2. The U(N)-case

Let again
X,
fl...n(i) — ) c Vl...n
be a vector-valued function of = x1, ..., x, with values inV1-" which is now given by
(2.15).

Analogously to theSU (N)-case in section 3.1 we constrain the functiph” by the
conditions 3.1. TheQ1 ,(x; i) fulfil the same commutation rules (3.4) as in section 3.1.
Also proposition 3.2 and remark 3.3 hold for th&N) case. We write the&)-matrices
again as the trace (3.6) of the new type of monodromy matrices analogous to those given
by definition 3.4. We use this monodromy matrix if the indeig associated with a particle.

If the indexi is associated with an antiparticle, we will use an additional monodromy matrix
of a new type which yields the inverse of tieoperators.

014,06 i) = O1.n(x; i) =t (x30). (3.26)

It is given by the following

Definition 3.10 Fori=1,...,n
Té’len (x; 1) = Rgy(x; — x1) ... Rgi_1(xi — xi—1) Pg; Ry 11 (x] — Xxi41) ... Rg, (x] — x)
(3.27)
with the auxiliary spacé/y = V andx/ = x; + 2.
The ‘unitarity’ of the R-matrix (2.21) implies (3.26).

The new type of monodromy matrif%len fulfils a new type of Yang—Baxter relation
of the form ’

T2 (D) Rap(xi — )Ty b (X' 1) = Ty (X, W) Rap(x] — )T, (x50) (3.28)

with x" = x1,...,x/,...,x, andx] = x; + 2. In addition to the commutation rules (3.10)
and (3.11) for the case that the indidgesnda belong to particles, we have the commutation
rules for the case that the indicesinda correspond to antiparticles

20,/
AC(x; )By(x' u) = %BIJ@, WAC(x; i) +d(x] — u)BY (x; HAG', u)
(3.29)
D2 (x; 1)By(x', u) = By(x, u) Rap(x] — ) D (x; i) — d(x; — u) B (x; 1) Kap Dy (x', u).
(3.30)

The system of difference equations (3.2) can be solved by means of a generalized (‘off-
shell’) nested Bethe ansatz. The first level is given by the following.

Bethe ansatz 3.11
FEE) =D By 6 ) o Bung, O, un) gt (x, w) (331)
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where summation over & 4, ..., 8, < N is assumed. The summation oveis specified
by

=, ...,uy)=@1—21,...,0,—2,) I, eZ (3.32)
where thei; are arbitrary constants. For a fixed set of indiges Bl B (< Bi <N)

the reference state vectgt-"g € V- fulfils
Cr.’g"" =0 1<y <N). (3.33)

Note that we have denoted here pywhat was called2g in section 3.1. This notation
iS more convenient, since in contrast to th& (N) case the space of reference states is
higher dimensional folU (N). This spaceV,e of states fulfilling (3.33) is spanned by all
basis vectors of the form

€+ for particles

lag, ooy o) o -
(o, —) Ql<a; <N) for antiparticles.

The U (1)-charge is left invariant by operators like the monodromy matriges o, Tf,n,o,

T2, , and also by the operations of conditions 3.1. Therefore the space decomposes

into invariant subspaces of fixed charge, i.e. fixed numhersn, (n_ + n, = n) of
antiparticles and particles, respectively. Moreover because of the symmetry property (i) it
is sufficient to consider the even smaller subspacéd+ where the antiparticles and the
particles are sitting at fixed placds and 1., respectively

Vil —yl- gyl v =i vi =@V (3.34)

iel_ iely
such that

Vl...n — @ v (335)

[_UL.={1,...n}

In the following we consider the case where the antiparticles are sitting at the fiptaces,
i.e. I_ = {1,...,n_}. Then the space of reference states in the subspace may be
written as

Vg NVEE =2V P ..o vD gl (3.36)

where the spaceé’i(l) = CN-1 contain only antiparticle states with > 1 and the vector
Q!+ consists of particles wite = 1

QF=1...nevh
Therefore, as in (3.16§ may also be considered as a vector
gl...nhl.“h,,,g c V(l)’—b1~--bm ® Ql+
with
yorEt = Qe vl e e vy (3.37)

iel_

where theV¥ = CN¥-1 are the smaller antiparticle spaces and ¢ = CV~! are
smaller particle spaces. Again as in section 3.1 we define a new vector-valued function
f(l)l’bl”'b’" c V(l)l’bl'“b’” by



Matrix difference equations and a nested Bethe ansatz 6437

Definition 3.12 Let gl-"’+bng(x,u) be given in the subspace with fixed positions of
anti-particles/_ and particled, as

m

gl...nhlmb,,, (x,u) = 1_[ 1_[ ¥ (X — uj) l_[ T(u; — uj)f(l)l,bl,..bm (l(_)’ W ® ol+ (3.38)

iely j= 1<i<j<m
wherex ™) = {x;;i € I_} are the spectral parameters of the anti-particles only.
The functionsy (x) and z(x) are the same as in section 3.1 given by (3.20). For the

case that the antiparticles are sitting at the firstplaces the Bethe ansatz 3.11 may be
depicted as

1 1 }
( FOE w0 )

where W (x, u) is given by the products ofs andzs of (3.38). The main theorem of this
article is analogous to that of section 3.1.

Theorem 3.13 Let the vector-valued functiory”(x) be given by the Bethe ansatz
3.11 wheregh-b1-bn (x, u) is of the form of definition 3.12. If in addition the vector-
valued functionf@" """ (x w) e VO fulfils conditions 3.1(i%) and (i), then
fl"(x) e V fulfils conditions 3.1(i) and (ii), i.e.f"(x) is a solution of the set of
difference (3.2).

Proof. Condition 3.1(i) follows as for theSU(N) case. Again it is sufficient to prove
condition 3.1(ii) fori = n

O@x;n) f(x) = f(x) (' =x1,.., %, =X, +2).
where the indices 1 .n have been suppressed. For the case that the imdmtongs to a

particle the proof is similar to that in section 3.1. The only difference is that here the next
level Q-matrix is more complicated. Instead of (3.22) we have here

T2 us b)) = [ R i — wn) R (us — ) .. RSty — ) Poa. (3.39)

hla
iel_

For the case that the indexbelongs to an antiparticle we will prove the inverse of (ii)
using 7 1 - We applyQ~1(x;n) = Q(x: n) given by the trace of; Py 1 L, (x;n) (cf (3.27))
to the vectorf - (x’) as given by (3.31) and push?(x; n) and DdQ(L n) through all the
Bs using the commutation rules (3.29) and (3.30). Again witk xq, ..., x, = x,+2 we
obtain

A9(x;n)By, (x', ) ... By, (x', u1)

1 d2x —u
= By, (x, um) ... By (x, Ml)l_[ l—i—d((x - ))AQ(g; n) + uw,

D2 (x; 1) By, (X', ) . . . By, (x', 1)
= By, (X, Un) ... By, (x, u) RS

m [lbl

(x) —ug)... (1) (x —um)D (x;711) + Uwp,.



6438 H Babujian et al

The ‘wanted’ and ‘unwanted’ terms have origins analogous to those faftitt(@/) case. If

we insert these equations into the representation (3.3%¥).0f) we find however, that the
wanted contribution fronA ¢ vanishes and the wanted contribution fra»¥ already gives
the desired result. By definition &f2 and the reference state vecipwe have

ACximg=0  D2(ximg=]] Ry (n—xi)Ping

iel_
if the indexn corresponds to an antiparticle. With
-1 _
0V (x u;n) = tr{l< 1_[ Réll»)(x,, — x;) Pai R;}])l(x,/l —uy)... R;}}m (x, — um))
iel_

and the assumption

0t uym) fOCT w) = Y, w

it follows that the wanted term frond2 yields f(x). Again as for theSU(N) case the
unwanted contributions can be written as differences which vanish after summation over
the us. Because of the commutation relations of & (2.12) and the symmetry property
(YD of gl-mbr-bno(x() u) it is sufficient to consider only the unwanted terms joe m
denoted by udf and uwj,.

UW} (x, u) = d(x, — un) BY (x;m) ... By, (x, ul)HﬁA(x )
Um J

)
j<m
UV\/[H)& (ﬁv ﬂ) =—d(x, — Mm)B‘ (x. m)

B [ G Db, (' tn) K, Ry, (U1 — ). ..
J

j<m Unm)

.. R(l) _1bp (Mm 1= )
With
Dy(x,w)g(x, w) = [ [ bt —w) [ | R (i — w)g(x, w)

iel, iel_

QM us by) = tr, T2D (7, us by)
(see (3.39)), the assumption {(H) in particular the relation
0V b)) fP 7w = P U)W =, = un +2)
and the defining relations of the functiogigx) andt(x) (3.19) follows

uwy (x, u)g(x, u) = —trzuwy, (x, u')g(x, u')

which concludes the proof.

As in section 3.1 we can iterate theorem 3.13 to get the nested generalized Bethe ansatz
with levelsk = 1,..., N — 1. To simplify the notation we introduce as an extension of
I+ the index setd; with n;, = |I;| elements fokk = 0,..., N — 1 and as an extension of
(3.35) and (3.37) the spaces

yo -k _ ® AL ® y® (3.40)

iel_ iely
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with basis vectorgay ... a, o1...a,)(k < @;, o; < N). In terms of the previous notation

. . 1_1 w.bm 11
we identify I, = Io, ny = ng, V3" = VO andy """ = y@*-1 The ansatz of level
k reads

1)=Tk-1 - 1 k=1 — k—1
f(k ) ( (k )) B} . ) 7( )’i( )7xy(lk)).”
(= 1}3;; k
x®
I_It_1P1.-n
B(k D x(*)’ x(kfl)’ x(k) (k—1)"~ k—1FL Pk x(*)’ x(kfl)’ x® 3.41
I = = 18 = = =

where fork < N — 1 analogously to definition 3.12

Ng—1 ng

k=1 f-1lk o (— k—1 k k=1 k
g( ) @( )’K( ),i( ))_nnw(x( ) {))

i=1j=

% 1—[ t(c® - xj(k))f(k)’*’*' @, x0) @ QU-Dl1 (3.42)
I<i<j<m
Fork = 0 with f©@ = f andx@ = x™® we have to replac§[;%, by [],., . The start
of the iteration is given by &max (1 < kmax < N) such that allz, = 0 for & > kmax. We
have to construct a vector-valued function proportional to a fixed vector which fulfils the
assumptions of theorem 3.13. This is given by the following.

Lemma 3.14 The vector-valued functions fdix < N

flmaehhmact g N e (3.43)
and forkpax= N
FOPTREO D) < TT [T dwvea” = )IN NN N) (3.44)
iel_jely_1

fulfil the conditions 3.1. The functiony_1(x) has to obey the functional equation
(L+dx)Pn-1(x) = Yy_1(x — 2) (3.45)
which is solved by

Yn-1(x) = (3.46)
Again the general solution is obtained by multiplication with an arbitrary periodic function
with period two.

Proof. Condition 3.1(i) is fulfilled because of the symmetry with respect to the particles
and antiparticles among themselves. Conditions 3.1(ii) follows from the definition (3.3) of
the Q-matrix and (2.18) of thér-matrix. Forkmax < N condition 3.1(ii) follows since the
Q-operators act as the unit operator on the sfefe=2"""">*  For kmax = N we have

to take into account annihilation—creation contributions of the antiparticle—paiRiohetrix
(2.18). For the last index ihi_ we have

QW IO x Wiy = [T A+dD +2-x")1
J€IN-1

and for the last index idy_1
QW () My gy = [T +d (™ =iy P)L

’lN 1
jel-

which, together with (3.45) implies the difference equations (ii) for (3.44). The solution
(3.46) of (3.45) follows since +d(x) = (x —14+2/N)/(x — 1).
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Corollary 3.15 The system o/ (N) matrix difference (3.2) is solved by the generalized
nested Bethe ansatz (3.41) with (3.42)—(3.45).

4. Weights of generalized Bethe vectors

In this section we analyse some group theoretical properties of generalized Bethe states. We
calculate the weights of the states and show that they are highest weight states. The first
result does not depend on any restriction to the states. On the other hand the second result
is not only true for the conventional Bethe ansatz, which solves an eigenvalue problem and
which is well known, but also, as we will show, for the generalized one which solves a
difference equation (or a differential equation).

4.1. The SU(N)-case

By asymptotic expansion of tHe-matrix and the monodromy matrik (cf (2.5) and (2.9))
we get foru — oo

2
Rap(@) = Lo — ~—— Pap + O ™?) (4.1)
Nu
2
T na (x,u) = 11...11,a + Nu My 4+ O(”72)~ (42)

Explicitly we get from (2.9)
Ml,..n,a =P+ + Py (43)

where thePs are the permutation operators. The matrix element®0f, , as a matrix in
the auxiliary space are thwe:(N) Lie algebra generators. In the following we will consider
only operators acting in the fixed tensor product spdce V1 of (2.1); therefore we will
omit the indices 1..n. In terms of matrix elements in the auxiliary spd¢gethe generators
act on the basis states as

n
Mo, ..oy iy oo, 0y) = ZSaraiml,...,a,...,aH). (4.4)
i—1

The Yang—Baxter relations (2.10) yield foy — oo
[Ma + Py, Tb(-xb)] =0 (45)

and if additionallyx, — oo

[My + Pup, My] =0 (4.6)
or for the matrix elements

(M, T )] = 8up T (u) — Sup T (1) (4.7)

(M M) = 8upME — Sup M. (4.8)

Equation (4.8) represents the structure relations ofsth@V) Lie algebra and (4.7) the
SU(N)-covariance ofT'. In particular the transfer matrix is invariant

[MY,trT (u)] = 0. (4.9)

We now investigate the action of the liting operatdf§ (o’ > «) to generalized Bethe
vectors.
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Lemma 4.1 Let F[gl(x) € V be a Bethe ansatz vector given in terms of a vector
g(£1 ﬂ) c V(l) o~ (C(Nfl)®m by
F[g](x.u) = Bp, (x,un) ... Bp, (x, u1) Qg% (x, u) (4.10)
with B = 1, ..., B Then M¥ F[g] is of the form
, > Bj, .. uwp, . BuQG () fora’ >a=1
M Flgl=3 i+1 (4.12)
F[M(l)z/g] fore’ >a>1
where theM(l)Z/ are thesu(N — 1) generators represented W¥ (analogously to (4.3))
and
1 Hl?fl b(xi — um) 1
Gu(x,w) = | = _— 0P (s m) | g(x, w). (4.12)
(l_[jzl b(”m - uj) l_[jzl b(ld] - um)
The operatorQ® (u; m) € End(V®) is a next level Q-matrix given by the trace
0P (u; m) = tr, T2 (u; m) (4.13)
(see (3.22)). The otheF; are obtained by Yang—Baxter relations.

Proof.  First we consider the case= 1. The commutation rule (4.7) reads f6r= 1 and
o =«

[MY, Bg(u)] = apAu) — Dg(u).
We commuteMy through all theBs of (4.10) and usé/{Q = 0 for « > 1 (cf (4.4)).
The As and Ds appearing are also commuted through all B using the commutation
rules (2.13) and (2.14). In each summand exactly Braperator disappears. Therefore the
result is of the form of (4.11). Contributions @,, arise when we commut&fy through
Bg, (u,,) and then push thé (u,,) and D(u,,) through the otheBs (j < m), only taking
the first terms of (2.13) and (2.14) into account. All other terms would contabig,)
and would therefore contribute to one of the otlégr (j < m). Finally we applyA (u,,)
and D(u,,) to

An)Q=2  Djum)Q=dus [ [ 00 — un)Q
i=1

and get (4.12).
Foro’ > o > 1 we again use the commutation rule (4.7)

[M, By ()] = 825 Ba(w)
and get
, , o
M By, () ... By, (1) = By, () .. By, (u)MZ + By () ... By (u) MV

with M" = PP ...+ PD analogously to (4.3). Because 8f¢'Q = 0 fora’ > 1
(cf (4.4)) we get (4.11)

The diagonal elements @ are the weight operator#, = M¢, they act on the basis
vectors inV as

W(Xlala -~-aan) = Z‘Sa;a|al»~-~aan> (414)
i=1
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which follows from Pi§’|a,<) = bae,|@). In particular we get for the Bethe ansatz reference
state (3.14)

Wo = 8,1nL2. (4.15)

Lemma 4.2 Let F[g] € V" be as in lemma 4.1. Then
(n —m)F[g] fora=1

W, Flg] =
«Fle] F[wPg] fora > 1

(4.16)

where theW Vs are thesu (N — 1) weight operators acting i, i.e. the diagonal elements
o

of generator matrix V7 (analogously to (4.3)).

Proof. By means of the commutation relation (4.7) tor=ac =8 =1,8>1
[Wi, Bg] = —Bg

we commuteW; through allm Bs of (4.10) and with (4.15) we get the first equation. For
the second equation we again use (4.7) nowefoe o > 1,8 =1,8>1

[We, Bg] = 8apBg.
Again commutingW,, through all theBs of (4.10) we get with (4.15)
W, Bg, ... Bﬂlggﬂlmﬂm = Bg, ... Bg, (Wa + Zaﬂia>Qgﬁlu.ﬂm

i=1
= By, ... B, QWD g)f-Pr

which concludes the proof.
Theorem 4.3 Let the vector-valued functioif (x) € V be given by the Bethe ansatz 3.5

fulfilling the assumptions of theorem 3.7. If in additigiiV is a highest weight vector and
an eigenvector of the weight operators with

WD FD — @ @ (4.17)
then alsof is a highest weight vector
MYf=0 (@ > a) (4.18)

and an eigenvector of the weight operators

Wof = wof waz{"_m fora=1 (4.19)
wél) fora > 1
with
We = W 1I<a<B<KN). (4.20)

Proof. To prove the highest weight property we apply lemma 4.1. By assumptibn
fulfils the difference equation

FOU o un +2) = 0P usm) fF Py, ..., up).

Together with (3.18), (3.19) and (4.12) we obtain after summalon G,,(x, u) = 0, if
Uy = iy, — 2,1, € Z). The same is true for the oth&#; in (4.11), sinceg fulfils the
symmetry property of condition 3.1(i) and therebyg](x, u) of (4.10) is symmetric with
respect to the;. Therefore in (4.12) we havf® f = 0 fora’ > « > 1 and fore’ > o = 1
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by assumption ory®. The weights off follow from lemma 4.2 and also by assumption
on f@. From the commutation rule (4.8) amﬂf* = Mj follows

0< MEMG = MEMJ + Wy — Wy

which implies (4.20).

Since the stateg *m>—1 of (3.25) are highest weight states W*m—1 with weight
w(';jj*’l) = Riy,,—1 WE have the following.
Corollary 4.4 If f(x) is a solution of the system &fU (N) matrix difference equations
(3.2)

Floxi+2..0=06)F(. . xi...) G=1...,n

given by the generalized nested Bethe ansatz of corollary 3.9, thisna highest weight
vector with weights

w=(wy,...,wy)=0m—n1,n1—Np,...,AN_2—NAN_1,AN_1) (4.22)
wheren,, is the number oB*~? operators in the Bethe ansatz of lekelk = 1, ..., N—1).
Further non-highest weight solutions of (3.2) are given by

fo‘t’" = Mgf (o < ). (4.22)

The interpretation of (4.21) is that ead® -operator reduces), and lifts aw; (I > k) by
one.

4.2. TheU(N)-case

The results of this section and also the techniques used are very similar to the corresponding
ones of the previous section. Therefore we only point out the main differences. By an
asymptotic expansion of tHe-matrix and the monodromy matrik (cf (2.5), (2.18), (2.20)

and (2.23)) we get for — oo

2
Rap() = Lyp — —— Pap +O(u™) (4.23)
Nu
2
Rap(u) = 1, + mK&b + O(u™?) (4.24)
2
TinaGew) =11 na + 5 Mina+ O(u~3?). (4.25)
u

Explicitly we get from (2.23)
Ml...n,a = Z Pia - Z Kia (426)

iel, iel_
where . denote the particles and antiparticles, respectively.
In the following we will suppress the indices like 1 n. In terms of matrix elements
in the auxiliary spacé/, the generators act on the basis states as

My, .., @) = (Zam — ZSa/a,>|a1,...,ot,...,oen). (4.27)
iely iel_

The commutation relations of th& and 7" which follow from the Yang—Baxter relations

are the same as in section 4.1. Also lemma 4.1 holds here fa/ {he case. However,

one has to replac®g in (4.10) by g as in Bethe ansatz 3.11, and t@ematrix here is

given by the trace of (3.39).
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The slight difference to th#U (N) case arises from the action of the Cartan sub-algebra;
i.e. from the diagonal elements & which are the weight operatoi¥, = M. They act
on the basis vectors i as

Wolag, ..., a,) = <Z 50{0!,‘ - Z 50{0{,-) lag, ...y o) (428)

iely iel_
which follows from (4.27). In particular we have for the Bethe ansatz referencegstate
Wig =n,g. (4.29)
This means that also lemma 4.2 holds here for th@/) case where, however, in (4.16)

the numbem is replaced by, .

Theorem 4.5 Let the vector-valued functiofi(x) € V be given by the Bethe ansatz 3.11
fulfilling the conditions of theorem 3.13, i.e. (3.38) and (3.19). If in additipf® is a
highest weight vector and an eigenvector of the weight operators with

WD FD — @ @ (4.30)
then f is also a highest weight vector
MYf=0 (@ > a) (4.31)

and an eigenvector of the weight operators

Wof = w,f w, — ny—m fora=1 4.32)
w fore > 1
with
Wy = Wp I<a<B<N). (4.33)

The proof of this theorem is again parallel to the corresponding one section 4.1.

The statesf *m>—1 of lemma 3.14 which define the start of the iteration of the nested

Bethe ansatz are obviously highest weight states/ftr=—2 with weight w{™" =

Nimax—1 — N— DY (4.28).
Corollary 4.6 If f(x) is a solution of the system df (N) matrix difference equations
(3.3)

fC.o,xi+2,..)0=0x ) f(..,xi,...) (i=1...,n

given by the generalized nested Bethe ansatz of corollary 3.15, thisra highest weight
vector with weights

w=(wg,...,wy) =4 —n1,R1 — N2, ..., AN_2 — NN_1,AN_1 — N_) (4.34)

wheren,, is the number oB® operators in the Bethe ansatz of lekelFurther non-highest
weight solutions of (3.2) are given by

[ =M"f (@ < ). (4.35)

Note that in contrast to th8U (N) case, here the weights may also be negative.
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5. Examples

5.1. The SU(N)-case

From a solution of the matrix difference equations (3.2) one gets a new solution by
multiplication of a scalar function which is symmetric with respect to all variables
and periodic with period two. Therefore the solutions of the following examples may
be multiplied by such functions.

Example 5.1 The simplest example is obtained fbyax = 1 which means the trivial
solution of the difference equations
fl...n — len.

The weights off1" arew = (n,0, ..., 0).
In the language of spin chains this case corresponds to the ferromagnetic groundstate.

Example 5.2 For the casémax = 2 andn¥ = 1 the solution reads
FE) = By g ) Q"R (x, u)

with u =2 — 21 (I € Z, u an arbitrary constant) and

g u) =8p2 [ [¥xi —w).

i=1
The weights of this vectof!” arew = (n —1,1,0,...,0). The action of the creation
operatorBy._, g(x, y; u) on the reference state is easily calculated with help of (2.6), (2.9)
and (2.11).

As a particular case of this example we determine explicitly the solution for the
following.

Example 5.3 The action of theB-operator on the reference state for the case &f2 of
example 5.2 yields

B2 g(x, y; w)|1l) = c(x —w)b(y — w)|BL) + c(y — w)|18).
Therefore we obtain

2y =Y v —wp(y — wle@ — wb(y — w)[21) + c(y — w)]12))

with u = & — 21, (I € Z). Using the expressions for the functiobsc, ¥ given by (2.7)
and (3.20) we get (by Dougall's formula) up to a constant

12 o w x—u 1Y . y—u 1 y—x 1
f (Ly)—(SImT( 3 —N>Sln7r( 5 —N>F< > +N)

~1
><F<1+ Ty, ;)) (121) — |12)).

2
This solution could also be obtained by means of the method used in [3], namely by
diagonalization of thdR-matrix. One obtains the difference equations
J=(,y) =R_(x = y) f-(y,x) [~y =f-(,x+2)
with the eigenvalueR_(x) = (x + 2/N)/(x — 2/N) of the antisymmetric tensor
representation.
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Example 5.4 Next we consider forN > 2 the case of the quantum spatg; =
V1 ® Vo ® V3 and the case that the nested Bethe ansatz has only two levels with two
creation operators in the first level and one in the second level. This nigaps= 3,
n=23nY =2 n? =1 and the weightsv = (1,1,1,0,...,0). The first level Bethe
ansatz is given by

B, y.2) =) Biaap(x, y.2: v)Bioaa(x, v, 2: )% (x, y, 2z u, v)
where the summation is specified by=ii — 2k, v =i — 2, (k,l € Z). By (3.18)g*? is
related to the next level functiofi®'? by

12
Pasyuwny= [ [ v —upr@—o) fO @, v).
Xi=X,y,Z Uj=U,v

The second level Bethe ansatz reads

12 12
O, )_ZBlZy(u v; w)QP gD (u, v; w)

)12 )12.

wherew = w — 2m, (m € Z). The second level reference stated® ™ = [22)D ¢ v@

Again according to (3.18)

gV (u, v;w) = Y — wyp (v —w) fP7

with @7 = §,3. As in example 5.3 the action of the operat@rand B® on their reference
states may be calculated.

For this example the two-level nested Bethe ansatz may be depicted as
xX|y|z

1

1 Z\MU
1171 w.

22 3

5.2. The U(N)-case

Example 5.5 Let us consider the trivial case that there is Bperator in each level of

the nested Bethe ansatz, which means Ahat of section 3 is equal to one. In the language

of the conventional Bethe ansatz for quantum chains this corresponds to the ‘ferromagnetic
vacuum’. By section 4 this means that-"(x) has the weights

w=m4,0,...,0,—n_).

For fixed positions of the particleg, and antiparticles/_ by lemma 3.14 the vector
fim e vI-I+ is given by

Fer @) =T 8un [ [ o

iel_ iel,
or if the antiparticles are sitting at the first places
fLm=|N...N1...1).

This f1-" is a highest weight vector ifr.
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Example 5.6 For N > 2 andn, > 2 let us take the case where there is dheperator

in the first level of the nested Bethe ansatz andBwoin higher levels, which means that

the kmax Of section 3 is equal to two. By section 4 this means that the weights are
w=my—1,10,...,0,—n_).

The first level ansatz reads

FH) =) Brap(xiwgh " (x: ). (5.1)

For fixed positions of the particlels. and antiparticled_, if the antiparticles are sitting on
the left of all particles, the functiog®"# is given by

g P = [[ve —w " e o (5.2)

iely

with Y (x) =T (1— % + %) /T (1+3) (see (3.19)) and by lemma 3.14

O N N2 Ql =11...1) (5.3)

i.e. f@ is the highest weight vector |ib{(l) Note that the functiony appears only with

respect to the parameter which correspond to the particles. The action of theperators

in (5.1) can easily be obtained from the definition of Renatrices (2.17) and (2.18). In
particular we consider the following.

Example 5.7 As a simple case of example 5.6 we take= 1 andn, = 2, which means
w=(1,1,0,...,0,-1)

By =Y Y — ¥ — ey — Wb — w|N21) +c(z — u)|N12)}.
The sum over can be performed and gives the same result as in example 5.3.

Example 5.8 ForN = 2letn_ = n, be= 1. In addition to the trivial case of example 5.5
with no B-operator (v = (1, —1)) there is only the possibility analogous to examples 5.6 and
5.7 with oneB-operator. By section 412(x, y) is anU (2)-singlet vector with the weights

w = (0,0). For N = 2 we must take into account the annihilation—creation contribution,
for the action of theB-operator on the reference state as well asffdt due to lemma 3.14:

FPRy) =Y i — 0y (y — wid(x — wb(y — w)11) + c(y — u)[22)}

with ¢ (x) = ¥1(x) =T (3 + %) /T (1 + 3). As in example 5.7 the sum over= i — 2/,
(I € Z) can be performed and we get for afythe solution
COS% (x —y)

- 1 _ _
12 .
fren = COS% (x — i) COSS(y — i) x —y + 1“11) +122).

As a generalization of this formula for arbitraly we consider the following.

Example 5.9 Let us take fom_ = n, = 1 the case where there is exactly aheperator
in each level of the nested Bethe ansatz, which means that,theof section 3 is equal
to N — 1. By section 4 this means the weights ave= (0, ..., 0), i.e. f1%(x, y) is an

U(N)-singlet. The first level ansatz reads

fPR.y) =Y By, yiw)g® (x, yiu) (5.4)
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whereu =u + 2/, € Z and

i 10
g0, y ) =y (v —w) P, Q2. (5.5)
The higher-level ansatze are of the same form. A particular solution is
- 1
b = ———8ap. 5.6
frayy = 1 (5.6)

Proof. The solution (5.6) is, up to a constant, the particular éase0 of a general formula
valid for all levels. This general formula (again up to unimportant constants)

FOP @) = = 8y k<a B N) (5.7)
where as an extension of (3.46)

_ r 1 + £

Yi(x) = (2*2) (5.8)

3 k x
rG-v+3)
will be proved inductively. Fok = N — 1 as the start of the iteration formula (5.7) follows
from lemma 3.14. For the other valuesioft follows recursively from (3.41) and (3.42):

_yiz _ i
P00y = 30 BE Vo v g P (e, v w) (5.9)

u

> B;’;;”(x, y;w)lak) = d(x —u)b(y — w)lkk) + c(y — u)|ap) (5.10)

u

gX Y vy = Yy — w) O (). (5.11)

We calculate the right-hand side of (5.9) inserting (5.10) and (5.11) yifthgiven by (5.7)
and withu = x + 2/

N
D v —win(y — x){d(x —w)b(y —u)(N = k)|kk) +c(y —u) Y |&a>}
1 o

=k+1
1 {r(—lﬁ +1)
1

N (N — k)|kk)

F(—++41) I(

= constanty_1(x — y) Z @) = constantf«D(x, y). (5.12)

a=k
The sums ovef were performed using the Gauss formula
Z Fa+DI'(b+1)  T(c—a—bI'(@T(b)
I'T(c+1)  T(—-al(c—->b)

This concludes the proof of formula (5.7).

Example 5.10 The last example will be used in [17] to calculate the exact three-particle
form factor of the fundamental field in the chiral Gross—Neveu model. We iake: 1,
n, = 2 and again exactly ong-operator in each level of the nested Bethe ansatz. By

section 4 this means thgt'23(x, y, z) is a U(N)-vector with weights
w=(10,...,0).
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The first level ansatz reads

F20, 3,2 = Y Biaap(x, v, 20V (x, y, 25 0, (5.13)

The higher level(k > 1) Bethe ansatz coincides with that of example 5.9. A solution of
the difference equations for this case is given by

- F(—f 4+ (=2 4+25% r(-3+3¢ i}
] B e = e UL
PRI ) T
) T TG A
T ra-de) rhe) o)
) e TG b

whereu =u + 2, [ € Z.

Proof. Analogously to (5.10) and (5.11) we have fér= 1)

Bizaﬁ(x, v, z;w)lall) =d(x —u)b(y —u)b(z — u)8a,g|111) +c(y —u)b(z —u)lapl)
+e(z —w)lalp)

gy, ziu) = (v — ¥z — ) fOP (x, )

where fO% (x. u) is the same function as in example 5.9 and given by (5.7)fer 1.
Inserting this into (5.13) we get by analogy to (5.12) the result (5.14).
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